Parametric analysis of GDT- and GDMTbased neutron sources

D. V. Yurov, V. V. Prikhodko and P. A. Bagryansky

Budker Institute of Nuclear Physics

- Introduction
- Models and algorithms
- Numerical experiment setup
- Results and Discussion
- Summary

- Introduction
- Models and algorithms
- Numerical experiment setup
- Results and Discussion
- Summary

High-power neutron sources (NSs)

NS's types:

- ADSs accelerator-driven systems
- FNSs fusion neutron sources

Possible applications:

- Material science
- Neutron scattering science
- <u>Using within subcritical</u> <u>hybrids</u>

Hybrid with a mirror-based NS

The goal of the study

... is estimating capabilities of GDT- and GDMT-based fusion neutron sources as applied to using in hybrids

Searching for NS configurations with $Q_{eng} \approx 0.1 - 0.2$ Actually, Q_{eng} as low as 5.10⁻² is acceptable

GDT and GDMT concepts

GDT: gas-dynamic trap, experimental facility at BINP

• GDMT: gas-dynamic multiplemirror trap, a kind of "concatenation" of mirror facilities operated at BINP

- Introduction
- Models and algorithms
- Numerical experiment setup
- Results and Discussion
- Summary

DOL: the model for simulation of plasma in an axisymmetric mirror

Considered in the model are:

- Bounce-averaged kinetic equation for sloshing ions
- Particle and energy balance in background plasma
- Kinetic equation for plasma interactions with injected fast atoms
- Calculation of fusion reaction rates (with the finiteness of Larmor radii taken into account)

DOL: background plasma confinement regimes

- 4 main confinement regimes for background ions:
 - Collisional confinement by magnetic mirrorsAdiabatic confinement by mirrors

 - Collisional confinement by electrostatic potentialAdiabatic confinement by electrostatic potential
- Transient regimes are described by simple sum of confinement times

$$\sim \tau_{gd} \gg \tau_{kin} \Leftrightarrow L \gg \lambda \frac{\ln R}{R} \left(1 - \frac{e_i \Delta \varphi_{mir}}{T_e} \right), \Delta \varphi_{mir} \leq 0$$

Differential evolution $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ Optimized function $\mathbf{x}: \{x_{1}, x_{2}, \dots x_{N}\} \in \mathbb{R}^{N}$ Parameter vector $X: \{x_{1}, x_{2}, \dots x_{k}\}$ Set of parameter vectors

1. Randomly get three different parameter vectors $\{a, b, c\} \subset X : \{a, b, c\} \cap \{x_i\} = \emptyset$

2. Construct trial parameter vector

$$x_i' = a + F(b - c)$$

3. Assign new value if the result is better than previous $f(\mathbf{x_i'}) > f(\mathbf{x_i}) : \mathbf{x_i} = \mathbf{x_i'}$

4. Go to the step 1.

R. Storn, K. Price, Journal of Global Optimization, 11 (4), 341 (1997)

$\begin{array}{ll} \text{Direct search} \\ f: \mathbb{R}^{N} \rightarrow \mathbb{R} & \text{Optimized function} \\ \boldsymbol{x}: \{x_{1}, x_{2}, \dots x_{N}\} \in \mathbb{R}^{N} \text{ Parameter vector} \end{array}$

1. Construct 2N of trial parameter vectors

$$\begin{array}{l} \boldsymbol{x_i} & : & \{x_1, x_2, \dots, x_i' = x_i + \Delta_i, \dots, x_N\} \\ \boldsymbol{x_{i+1}} & : & \{x_1, x_2, \dots, x_i' = x_i - \Delta_i, \dots, x_N\} \end{array}$$

2. Choose the best option from the constructed set

$$\boldsymbol{x_{best}}: f(\boldsymbol{x_{best}}) = max[f(\boldsymbol{x_1}), f(\boldsymbol{x_2}), \dots, f(\boldsymbol{x_{2N}})]$$

3. Replace parameter vector or reduce the scope

$$f(\mathbf{x}_{best}) > f(\mathbf{x})$$
 ? $\mathbf{x} = \mathbf{x}_{best}$: $\Delta = \Delta/2$

4. Go to the step 1.

- Introduction
- Models and algorithms
- Numerical experiment setup
- Results and Discussion
- Summary

Layout of NS Configuration

- Right-angle injection at mirror ratio $R_{inj} > 1$
- Fixed magnetic field in mirrors $B_{max} = 15 \text{ T}$

Optimization layout

Optimization goal: $max(Q_{pl}), Q_{pl} = P_{fus}/P_{in}$

Varied parameters:

- R_{max} max. mirror ratio
- R_{inj} mirror ratio at the injector position
- E_{inj} energy of injected fast particles
- J_g gas feed to maintain background plasma density
- **r**_{pl} the radius of plasma column

Constraints:

- Transverse relative pressure $\beta_{\perp} \leq 0.5$
- Fraction of captured beam power $P_{cap}/P_{in} \leq 0.9$
- Nearly gas-dynamic regime of background ions confinement

Series of Calculations

- Introduction
- Models and algorithms
- Numerical experiment setup
- Results and Discussion
- Summary

GDT Series

Parameter	k = 1	k = 2	k = 5	$\mathbf{k} = \infty$	
E _{inj} , keV	122	123	120	230	
J _g , eq. kA	9.0	8.4	6.6	0	
T _e , keV	1.0	1.1	1.3	21.2	
$ au_{gd}/ au_{kin}$	1	0.5	0.2	0	
β_{\perp}	pprox 0.5				
P_{cap}/P_{in}	0.70	0.74	0.80	0.90	
$10^2 Q_{pl}$	4.0	5.2	7.7	135.3	

Fusion gain factors of GDT-based sources proved to be quite limited. The results leave a room for using GDT-based NSs in proof-of-principal facilities or testing stands

Example of redundancy: magnetic field influence on fusion gain factors

- R_{inj} and R_{max} variables taken separately do not strongly affect achieved fusion gains
- However, smaller R_{inj} and R_{max} values are more favorable for using NS in a hybrid system

GDMT Series

Parameter	N = 5	N = 10	N = 20
E _{inj} , keV	135	129	144
J _g , eq. kA	4.8	3.8	3.1
T _e , keV	1.7	2.1	2.5
$ au_{ m gd}/ au_{ m kin}$		≈ 1	
β_{\perp}		pprox 0.5	
P_{cap}/P_{in}	0.78	0.86	0.87
$10^2 Q_{pl}$	10.4	16.3	22.7

Neutron generation efficiency comparable to that of ADSs can be reached for GDMT-based source at mirror-to-mirror distance $L_0 = 20$ m and heating power $P_{in,0} = 100$ MW

Fusion gain as a function of NS length and heating power

 $\boldsymbol{Q}_{pl} = \boldsymbol{Q}_{0} \boldsymbol{L}^{X} \boldsymbol{P}^{Y}, [L] = m, [P_{in}] = MW$

 $Q_{0} = 1.4 \cdot 10^{-3} \pm 2 \cdot 10^{-4} \qquad Q_{0} = 1.1 \cdot 10^{-2} \pm 1 \cdot 10^{-3}$ $X = -1.8 \cdot 10^{-1} \pm 2 \cdot 10^{-2} \qquad X = -1.6 \cdot 10^{-2} \pm 1.8 \cdot 10^{-2}$ $Y = 8.4 \cdot 10^{-1} \pm 3 \cdot 10^{-2} \qquad Y = 5.8 \cdot 10^{-1} \pm 3 \cdot 10^{-2}$

Summary

- Performance of several NSs based on GDT and GDMT concepts has been considered.
- Each considered configuration has been optimized in order to determine the maximum achievable fusion gain
- The results listed further are valid for trap configurations with mirror-to-mirror distances $L \in [10, 100]$ m, heating powers $P_{in} \in [20, 200]$ MW and magnetic field in the mirrors $B_{max} = 15$ T.
- Provided background plasma is kept in nearly gas-dynamic regime of confinement, one can expect achieving $Q_{pl} \approx 5 \cdot 10^{-2}$ in GDT-based NS and $Q_{pl} \approx 1.5 \cdot 10^{-1}$ in GDMT-based NS.
- Power-law relation between fusion gain, heating power and mirrorto-mirror distance has been obtained. It can be used further for fast upper-bound estimates of fusion gain factors achievable in mirrorbased NSs similar to those considered in this study.

References

- 1. D. V. Yurov, V. V. Prikhodko, "Hybrid systems for transuranic waste transmutation in nuclear power reactors: state of the art and future prospects", *Physics-Uspekhi*, **57** (11), 1118-1129 (2014)
- D. V. Yurov, V. V. Prikhodko, Yu. A. Tsidulko, "Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma", *Plasma Physics Reports*, 42 (3), 210-225 (2016)
- 3. D. V. Yurov, V. V. Prikhodko, "Optimization of a mirror-based neutron source using Diferential Evolution algorithm", *Nuclear Fusion* (accepted)
- 4. D. V. Yurov, V. V. Prikhodko, P. A. Bagryansky, "Length and Power Scalings of GDT- and GDMT-based Neutron Sources", AIP Conf. Proc. (proceedings of this conference)

Thank you for your attention!

Differential evolution and Direct search algorithms: difference in the results

$Q_{pl} = q L^{\alpha}, [L] = m$

- Approximately the same power factors (α) in the scalings
- In the case of GDMT-based NS the difference between fusion gain factors at equal lengths and heating powers is below 5 %