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Abstract. On the GAMMA 10/PDX tandem mirror machine, divertor simulation experiments are carried out in the west 

end region by utilizing the particle flux from the confinement region. In order to control the particle flux and the ion 

temperature on the west end region, we have tried ICRF heating experiments with two types of antennas, double half turn 

(DHT) and Nagoya Type-III antennas, located in the west barrier cell. The ICRF heating in the barrier cell is effective for 

increasing the ion temperature at the end region. On the other hand, the particle flux is decreased due to the trapping of 

the ions from the central cell. This effect is more explicit by use of the Type-III antenna than the DHT antenna. The 

direct heating of the end-loss ions in the end region has been demonstrated to be effective for the increase of both ion 

temperature and particle flux. 

I. INTRODUCTION 

On the GAMMA 10/PDX tandem mirror machine, divertor simulation experiments are carried out in the west 

end region by utilizing the particle flux from the confinement region [1]. The particle flux of a few 1022 m-2s-1 and 

the parallel ion temperature of 100 - 400 eV are observed at the end region in a standard operation. The ion 

temperature of more than 100 eV is comparable to SOL plasma in large tokamaks. However, over tenfold increase 

of the particle flux is required for simulating the SOL plasma. Ion cyclotron range of frequency (ICRF) heating is 

one of appropriate ways for controlling end-loss ions in GAMMA 10/PDX. In previous experiments, the particle 

flux was increased to 1.7×1023 m-2s-1 with the parallel ion temperature remained over 100 eV at the end region 

during ICRF heating in the central cell and both anchor cells [2,3]. In order to increase the particle flux and the ion 

temperature more, we tried ICRF heating with antennas installed in the west barrier cell. 

 II. EXPERIMENTAL SETUP 

GAMMA 10/PDX is 27 m in axial length and consists of five mirror cells; a central cell for production and 

heating of the main plasma, minimum-B anchor cells located both sides of the central cell for magnetohydrodynamic 

(MHD) stabilization, and plug/barrier cells at both ends for potential formation with electron cyclotron heating 

(ECH) [4]. There are three ICRF systems in GAMMA 10/PDX called RF1, RF2 and RF3. RF1 and RF2 have two 

final amplifiers, and RF3 has one amplifier. Eight sets of antennas for ICRF heating are installed in 

GAMMA 10/PDX as shown in Fig. 1; two Nagoya Type-III (Type-III) antennas and two double half turn (DHT) 

antennas in both sides of the central cell, three double arc type (DAT) antennas in the anchor cells, and one DHT 

antenna in the west barrier cell (WB-DHT).  

In normal discharges on GAMMA 10/PDX, the seed plasma is injected with the plasma gun located at both ends 

of machine. Fast waves excited from Type-III antennas with RF1 produce plasma and heat ion in the midplane of 

the both anchor cells [5,6]. On the other hand, slow waves excited from DHT antennas with RF2 heat ions near the 



midplane of the central cell. After the plasma built up with RF1 and RF2, an additional heating with RF3 have been 

applied. 

 III. EXPERIMENTAL RESULTS 

III.A ICRF Heating in Barrier Cell 

By using WB-DHT antenna with RF3 of 7.7 MHz, we have tried ICRF heating in the west barrier cell. The 

resonance layer of 7.7 MHz is located near the midplane of the barrier cell. Figure 2 shows the influence of the 

additional heating on the west end-loss ions and the west barrier cell. Figure 2(a) shows the decrease of the particle 

flux on the west side and the increase on the east side during the additional heating. The parallel ion temperature of 

the west end-loss ions increases (Fig. 2(b)) and the line density of the west barrier cell increases remarkably 

(Fig. 2(c)). It is suggested the particles from the central cell are trapped in the barrier cell. Furthermore, ions are 

reflected to the east side due to the potential formation with the density increase. 

 In order to increase the particle flux on the end region, we have injected hydrogen gas with the additional 

heating. Figure 3 shows the ratio of the particle flux and the parallel ion temperature at the west end region during to 

before the barrier heating with WB-DHT antenna as a function of the plenum gas pressure. The increase of the 

particle flux is observed with the additional gas injection in the barrier cell. The particle flux increases over 20% 

with the plenum pressure of 500 torr. In that case, the parallel ion temperature does not increase. The line density of 

 

FIGURE 1. Schematic drawing of the magnetic field configuration and ICRF antennas of GAMMA 10/PDX. 

 

   

(a) (b) (c) 

FIGURE 2. The influence of the additional heating on the west end-loss ions and the west barrier cell. RF3 is used from 190 ms 

to 240 ms to drive WB-DHT with 7.7 MHz. RF3 input power is 85 kW. Time evolution of (a) particle flux and (b) parallel ion 

temperature on the end region and (c) line density of the west barrier cell. 
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the west barrier cell increases as the plenum pressure rises. The line density has reached 1.8×1013 cm-2.  

To evaluate the heating effect at the resonance layer, two secondary electron detectors (SED), which detect the 

charge-exchange neutral particles with pitch angles of 90 degrees (SED90) and 70.4 degrees (SED70.4), are 

installed in the west barrier cell. The ratio of both SED signals indicates the heating effect at the resonance layer. 

Figure 4 shows the heating effect, and the ratio of the particle flux and the parallel ion temperature during to before 

the additional heating with Type-III antenna installed in the west barrier cell (WB-Type-III), as a function of the line 

density of the west barrier cell. The WB-Type-III antenna is described in Sec. III.B. The decrease of the particle flux 

and the increase of the parallel ion temperature are observed with the additional heating. On the other hand, the 

parallel ion temperature and the heating effect decrease, and the particle flux increases as the gas injection. It is 

suggested the ion heating in the barrier cell is effective for increase of the parallel ion temperature, and the plasma 

production in the barrier cell is effective for increase of the particle flux.  

 

III.B Comparison Between ICRF Heating with DHT Antenna and Type-III Antenna 

 DHT antenna has been replaced to Type-III antenna to compare the effect for the end-loss ion control. Figure 5 

shows the influence of the additional heating on the west barrier cell with both antennas. As shown in Fig. 5(a), the 

 

 

FIGURE 3. The ratio of the particle flux (Γi) and the 

parallel ion temperature (Ti//) during to before the 

barrier heating (Γi0, Ti//0) as a function of the plenum 

gas pressure. RF3 powers are about 85 kW. 

 

Figure 4. The heating effect in the barrier cell, and the 

ratio of the particle flux (Γi) and the parallel ion 

temperature (Ti//) during to before the barrier heating (Γi0, 

Ti//0) with WB-Type-III as a function of the line density 

of the west barrier cell. 

   

(a) (b) (c) 

FIGURE 5. Influence of the additional heating on the west barrier cell with DHT antenna and Type-III antenna. (a) End-loss ions 

parameters on the west side against the line density of the west barrier cell, (b) the line density against the input power of ICRF 

waves, and (c) heating effect of both antenna against the line density. 
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particle flux on the west end region is increased with DHT antenna, and decreased with Type-III antenna. Type-III 

antenna is more effective for increase ion temperature on the west end region. The ICRF heating with DHT antenna 

is more effective for increase of the line density of the barrier cell as shown in Fig. 5(b). The heating effect of Type-

III antenna is stronger than that of DHT antenna as shown in Fig. 5(c). It is suggested the DHT antenna is effective 

for plasma production, and the Type-III antenna is effective for ion heating. 

III.C End-Loss Ion Heating with WB-DHT Antenna 

In order to increase both of the particle flux and the ion temperature on the west end region, a heating experiment 

of end-loss ions at the resonance layer in the end region has been performed with WB-DHT antenna. A frequency of 

7.2 MHz is used for the experiment. Because there are no resonance layers in the barrier cell, waves with a 

frequency of 7.2 MHz can propagate to the end region and heat the end-loss ions directly. Figure 6 shows the result 

of the experiment. The increase of the particle flux and the line density of the west barrier cell is observed. The 

parallel ion temperature on the west end region is also increased, even though the additional gas is injected in the 

west barrier cell. However, the parallel ion temperature on the east end region does not increase. 

IV. SUMMARY 

As shown in Fig. 7, we have controlled both the ion temperature and 

the particle flux on the west end region with ICRF antennas in the west 

barrier cell. In the case that the resonance layer exists in the west barrier 

cell, the increase of the line density and the parallel ion temperature, and 

the decrease of the particle flux due to the trapping ions from the central 

cell is observed. With the additional gas injection, the particle flux 

increases, however, the parallel ion temperature does not increase.  

Two types of antennas have been used for the barrier heating. It is 

confirmed that the DHT antenna is effective for the plasma production and 

the Type-III antenna is effective for the ion heating.  

Finally, ICRF waves with the frequency of 7.2 MHz have been used 

for the end-loss ions heating. In that case, there is no resonance layer in 

the barrier cell and waves can propagate to the end region. The increase of 

both the particle flux and the parallel ion temperature is confirmed as 

shown in Fig. 7.  

  

(a) (b) 

FIGURE 6. The influence of the ICRF heating with WB-DHT driven by 7.2 MHz ICRF waves.  RF3 is used from 180 ms to 

230 ms with 52 kW input power. Time evolution of (a) the particle flux and the parallel ion temperature on the west end region 

and (b) the line density of the west barrier cell. 

 

 

FIGURE 7. The ratio of the west end-

loss ions parameters during to before the 

barrier heating. 
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