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Abstract.  The transformation of high-frequency electromagnetic waves in quasi-electrostatic waves in a high-β open 

trap shows a number of peculiar features which significantly distinguish this process both from the case a strong 

magnetic field, which is used for heating of a dense plasma in toroidal traps and other low-β devices, and from the case of 

Langmuir wave coupling in nonmagnetized plasmas. These features are studied theoretically in the present work. 

INTRODUCTION AND THE PROBLEM SET-UP 

Microwave heating of electrons under the electron cyclotron resonance conditions is one of the most efficient 

ways to increase the electron temperature of magnetically confined plasmas. Recent pprogress plasma confinement 

in axially symmetric magnetic traps led to the achievement of high-β regimes, in which the ratio between plasma 

kinetic pressure and the magnetic field pressure (β) is of the order of unity [1-5]. Under these circumstances the 

Langmuir plasma frequency is much greater than the electron cyclotron frequency, cepe ωω >> . Therefore, the use 

of common schemes of electron cyclotron heating based on direct launch of electromagnetic waves from the vacuum 

window meets obvious difficulties because the resonance region is screened by dense plasma for all electromagnetic 

modes except waves propagating strictly along the external magnetic field. However, in many cases strictly 

longitudinal propagation is not technically possible. One way to overcome this problem is to use the linear 

transformation of electromagnetic waves in quasi-electrostatic plasma oscillations in the vicinity of the plasma upper 

hybrid (UH) resonance 2222
pecepeUH ωωωω ≈+=  [6-9]. Once exited, the quasi-electrostatic oscillations can be 

effectively damped by electrons, in particular, in overdense plasmas. Such microwave heating schemes at low 

cyclotron harmonics have been implemented in magnetic traps with low kinetic pressure:  stellarators, classical and 

spherical tokamaks [7]. The heating frequency for this systems is of the order of the electron cyclotron frequency, 

pece ωωω <~ . On the other hand, the opposite ordering ωωω ~pece <<  is more natural for high-β devices, 

otherwise the linear coupling and the plasma heating are localized at the very periphery of the plasma column [8]. 

As quasi-electrostatic waves are well absorbed even at high cyclotron harmonics [10], the key factor controlling the 

efficiency of the heating is the excitation efficiency of quasi-electrostatic waves by electromagnetic waves launched 

from vacuum.  

In magnetized plasma excitation of the quasi-electrostatic oscillations is possible as a straight-forward XB 

tunneling of the fast extraordinary wave (X) into the electron Bernstein wave (B) in the vicinity of the UH 

resonance, and as so called OXB process, a consequent linear transformations of the ordinary wave (O) into the slow 

extraordinary wave, and then to the then Bernstein wave [6,7]. 

The efficiency of the XB and OX coupling (the later in major extend defines the efficiency on the entire OXB 

process) is traditionally evaluated with Budden–Ginzburg approach as an integral of the purely imaginary wave 

vector over the evanescent coupling region in the vicinity of the UH resonance [11,12]. This approach is based 

entirely on the dispersion relation of waves in locally homogeneous plasma and do not take into account the 



peculiarities of the vector nature of Maxwell's equations in weakly inhomogeneous gyrotropic media. The resulting 

formulas work fairly well in case of strong magnetic field ωω ~ce
 [7, 13, 14], however do not allow correct 

transition to the isotropic plasma, in which the efficiency of the linear coupling of electromagnetic waves to 

Langmuir oscillations is also known [15]. The formal reason is that the phase integral technique (underlying the 

Budden–Ginzburg approach) works only when the singular points of the dispersion equations are spaced far apart, 

what requires either the strong anisotropy, or the isotropic degeneracy. Thus, the existing theory do not work in the 

domain of finite but low magnetic fields, ωωω ~pece << , that is of interest for high-β plasmas. In the present paper 

we fill this gap. We examine the XB and OX efficiency in the case of weak anisotropy, and compare the results with 

both known limiting cases of isotropic and strongly anisotropic cold plasma.  

 

 
 

FIGURE 1. Coordinate system 

 

We use the following simplifications. First, we consider one-dimensional geometry in which the external 

magnetic field is uniform and directed along the z axis, and the plasma density changes by parabolic law along the x 

axis, )/1( 22

0 Lxnne −= . It should be noted that non-one-dimensional effects may be important in the considered 

problem [9], however it is out of scope of the present communication. Second, we consider cold but weakly 

collisional plasma, i.e. neglecting effects of spatial dispersion due to thermal motion but introducing the effective 

collision rate ων <<eff
. Here we rely on well-known conclusion of the equality of the weak electromagnetic energy 

losses due the collisional and resonant collisionless wave absorption in the vicinity of the UH resonance [16], for the 

particular XB and OXB case see [13]. In this frame, the efficiency of coupling to the quasi-electrostatic mode is 

calculated simply as the absorption coefficient of the electromagnetic wave. Third, we consider a plane 

electromagnetic wave )exp( kriti −∝ ω  launched from the vacuum at certain direction characterized by two angles 

ϕθ ,  as shown in Fig. 1. With these assumption we solve numerically the full set of Maxwell's equations using the 

impedance technique developed in [13,16]. 

X-B COUPLING 

When an electromagnetic wave propagates in a plane orthogonal to the magnetic field ( 0=θ in Fig.1), the 

ordinary and extraordinary waves are independent, and only the extraordinary wave may be absorbed in the vicinity 

of the UH resonance. In this case Maxwell's equations may be reduced to a single second-order wave equation on 

the magnitude of the magnetic field in the X wave. 

Originally, one can select five dimensionless parameters that totally define the studied problem. They are: (1) the 

maximum plasma density 22

0
/)0( ωω

pe
X = , (2) the magnetic field strength ωω /ceY = , (3) the width of the density 

distribution Lk0=χ  with ck /0 ω= , (4) the wave propagation angle ϕ , and (5) the collision rate ων /eff
. We can 

reduce the number of these parameters noting that the efficiency of XB conversion is only affected by the density 

variation in the local vicinity of the UH resonance. Therefore free parameters 0X  and χ  should be included only in 

combination UH0UH Lk=χ , where UHL  is the inhomogeneity scale of the plasma density in the vicinity of the UH 

resonance. Aslo the collision rate may be set to 0/ →ων eff  since the total absorption does not depend on 

collisionality when 1/ <<ων eff . Thus, this parameter is needed for numerical calculations, however it can be 



formally excluded from a theoretical consideration. With these assumptions and taking into account the proximity of 

the Langmuir and UH resonances ( UHpe ωω ≈  for 1<<Y ), we obtain the following equation for the wave magnetic 

field in the vicinity of the UH resonance: 
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where UHUH
3/2 /)( LxxUH −= χξ , YY UH

3/2~
χ=  and ϕχϕ sin~ 3/1

UH= . Therefore, the final result for the XB coupling 

efficiency or, equivalently, the X wave absorption should depend on only two parameters, Y
~

 that describes the 

external magnetic field, and ϕ~  that is determined by the wave incident angle with respect to the layer. Both 

parameters include a large (for microwaves) parameter of geometric optics 10 >>UHLk , for this reason we can not 

immediately answer how to correlate these parameters with the unit.  

A new and important feature described by (1) is the asymmetry with respect to substitution ϕϕ ~~ −→ , see last 

term in the brackets. This implies that solutions of this equation also do not posses symmetry relative to the sign of 

wave incident angle. This feature differs essentially from the all known results obtained either for the isotropic, or 

for the strongly anisotropic plasmas (in both cases the evaluated dispersion relation is symmetric with respect to the 

sign of incident angle). To clarify a physical reason for such asymmetry let us consider the resonant component of 

the electric field parallel to plasma density gradient: 
уzx EiYHE +∝ ϕsin . The interplay of the polarization of an 

incident wave (proportional to ϕsin ) and the gyrotropy (proportional to magnetic field strength Y) can either 

suppress, or enhance the resonant field, which in turn, determines the coupling efficiency.  

 Here it is necessary to make a point, that far away from the UH resonance, equation (1) can be reduced to the 

so-called parabolic cylinder equation 0)/(/ 22 =++ FxbadxFd  used previously for analysis of the strongly 

anisotropic case [10]. However, inside the UH resonance zone, the singular points and the topology of the Stokes 

lines [18] of Eq.(1) and the parabolic cylinder equation differ dramatically from what follows that the properties of 

the solutions of these equations will differ significantly (outside the WKB approximation). 

The above qualitative conclusions are confirmed with numerical simulations. As an example, several 

dependences of the XB coupling efficiency 
XBT  over normalized incidence angle ϕ~  and external magnetic field 

strength Y
~

are shown in Fig. 2 (left). The coupling efficiency is defined as the total absorption coefficient of the 

incident X wave at the UHR. With the absence of a magnetic field, 0
~

=Y , we reproduce the well-known result 

obtained by Ginzburg for the isotropic plasma and characterized with two symmetric extrema at 3/17.0 UHχϕ ±≈  [12]. 

With the increase of the magnetic field the dependence of the coupling efficiency over the incident angle becomes 

asymmetric—the right maximum increases, reaching unity at 4.0
~

≈Y , and the left maximum decreases. With 

further increase of the magnetic field up 1
~

≈Y  the right maximum shifts to 0~ ≈ϕ  and the left maximum vanishes, 

thus the plot again becomes (approximately) symmetrical. At very high magnetic fields, 1
~

>Y , the efficiency tends 

to zero, in accordance with the predictions of the previous theory of the linear X mode coupling [12]. It is interesting 

to note that there is always one incident angle for which the coupling is exactly zero, and the very existence of this 

angle breaks the symmetry with respect to the sign of the wave incidence. 

O-X-B COUPLING 

If the wave vector of the incident wave has a component along the magnetic field, the ordinary and extraordinary 

waves cease to propagate independently. In this case the most effective coupling to the electrostatic modes is 

possible at a specific angle to the magnetic field defined as )1/(sin 2 YY +=θ  [6,14]. This is the OXB coupling 

regime. In this case, equations for the wave field becomes rather cumbersome, however the numerical modeling 

shows that the OXB coupling efficiency is defined by the similar two parameters as in previous case, namely Y
~

 and 

θχθ 23/1 sin
~

UH= . Here we consider a wave propagating in the zx −  plane, i.e. 0=ϕ  in Fig.1 

Figure 2 (right) shows the results of the numerical calculation of the OXB coupling efficiency 
OXBT  defined as 

the total absorption coefficient of the incident O wave. One can see that in the region 1~
~
Y  there is a good 

agreement with the widely used approximation for the OX tunneling efficiency obtained by Mjølhus [14]; in our 

notation the Mjølhus formula is ])
~

|
~

(|)
~

2(exp[ 22/12/1 YYT −−= θπ . However, with the magnetic field decrease the 



coupling efficiency also decreases as compared to the Mjølhus result. The physical reason is that there are the X 

waves that propagates towards the incident O wave behind the UH resonance. In a weak magnetic field such waves 

may partially tunnel through the evanescent region near the UH resonance, resulting in additional reflection of the 

incident radiation. In the limiting case 1
~

<<Y  we find a clear transition the isotropic case, where the efficiency of 

the transformation is determined by the presence of linear TM polarization in the O mode.  

Note that the increasing ability of the X mode to tunnel through the UH region in low magnetic field results not 

only in degradation of the OXB coupling, but also it increases the efficiency of the direct XB coupling. In this case, 

the maximum coupling efficiency is realized when both XB and OXB mechanisms are active, i.e. for the specially 

chosen mixture of X and O polarizations in the incident wave. Such optimization can significantly increase the 

efficiency of excitation of a quasi-electrostatic waves in high-β devices. 

 

 

FIGURE 2. Top plots: XB (left) and OXB (right) coupling efficiencies versus the normalized incidence angle for different 

values of the external magnetic field strength. The red line corresponds to Mjølhus formula for 2.1
~

≈Y . Bottom plots: contour 

lines of XB (left) and OXB (right) coupling efficiencies in the incident angle – magnetic field strength plane. Contour levels are 

spaced with 0.1 increment, the red line corresponds to the parameters for which Mjølhus formula predicts 100% coupling. 

Coupling efficiencies are defined as the total absorption in the vicinity of upper-hybrid resonance  

 

In conclusion, we note the coupling of high-frequency electromagnetic waves to the quasi-electrostatic waves 

under condition of weakly magnetized plasmas can not be described by common (for fusion plasmas) theories even 

within the simplest plane geometry and at least in the parameter range 3/2

0 )(/ UHce Lk≤ωω . Important new feature is 

pronounced asymmetry of the coupling process with respect to the plane defined by the gradient the plasma density 

and the external magnetic field. Most previous theories inherently lead to symmetrical about this plane results 

because they rely only on the spatial dependence of refractive index. On the other hand, straight-forward approach 

based on realistic wave equations not only correct the existing theory, but shows new options for the effective 

transformation of electromagnetic waves into quasi-electrostatic oscillations in weakly magnetized high-β plasmas. 



Therefore, the further studies in this direction are of prior importance for the development of effective electron 

heating scenarios in high-β magnetic traps. 
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