Introduction

It is experimentally found that during the propagation of an electron beam through a thin plasma column immersed in external magnetic field the powerful electromagnetic radiation is observed. What is the mechanism? How does the efficiency of radiation depend on plasma parameters?

Formulation of the Problem

- An electron beam (density n_0, speed v_0) and the relativistic factor γ_0 excite an unstable longitudinal wave.
- The frequency and growth rate of this wave are $\omega = \omega_0 = (m_0 / m) \gamma_0 v_0 / c$ and $\frac{d\omega}{dt} = \frac{\gamma_0}{\gamma_0 - 1} \alpha_0 \frac{d\gamma_0}{dt}$, where $\alpha_0 = \gamma_0 v_0 / c$.
- The electric field of the wave $E_0(\mathbf{x}, t) = E_0 \exp(i\mathbf{k} \cdot \mathbf{x} - i\omega t)$, where $E_0 = \gamma_0 / (\gamma_0 - 1)$. The wave vector $\mathbf{k} = \mathbf{e}_z$.
- If such a wave scatters on harmonic density perturbation ($\delta n = \delta n_0 \cos(qz - wt)$) it can radiate EM waves with frequency ω and wave vector $\mathbf{k}_0 = \gamma_0 / (\gamma_0 - 1)$.
- Generation is possible when $1 - \gamma_0 < 0 < 1 + \gamma_0$.
- The direction of the radiation $\theta = \arctan \left(\frac{\gamma_0 - 1}{\gamma_0 + 1} \right)$.

The Particular Case

The factor J_1 as a function of plasma thickness for $\omega = 0.9\epsilon_0$.

- When the modulation period coincides with the wavelength of the beam-driven mode ($Q = 1$) the radiation angle $\theta = 90^\circ$.
- Dispersion relations of eigenmodes:
 - $\alpha_0^2 = \eta$ and $\alpha_0^2 = (c^2 - \omega^2 / \epsilon)^{1/2}$.
 - $F_2 = 0$: this mode has X-polarization, can propagate inside the plasma but cannot interact with the longitudinal current.
 - The first mode has C-polarization and penetrates into the plasma only to the skin-depth ($\alpha_0 = \omega$).
 - The power density depends on $1 + \frac{3}{2}$.

Cylindrical Antenna

- $J_1[1] \propto \frac{\text{area} \times \text{radius}}{\text{plasma}}$.
- Efficiency of such radiation can be raised to the level of $5-10\%$.

Plane Beam-Plasma Antenna

Outside the plasma, electromagnetic fields $E = E_0 \exp(i\mathbf{k} \cdot \mathbf{x} - i\omega t) + \cdots$ c.c. obey

$$\frac{\partial^2 \phi_1}{\partial t^2} - \frac{\phi_1 - \phi_2}{\epsilon_0} = \frac{\omega^2}{\epsilon_0} \left(1 - \frac{\mathbf{k}_0^2}{\epsilon_0} \right),$$

where $\omega = \sqrt{\epsilon_0 \mu_0}$. The current $\mathbf{J} = \epsilon_0 \frac{\omega^2}{\epsilon_0} \mathbf{k}_0^2$. The radiation angle $\theta = \arctan \left(\frac{\gamma_0 - 1}{\gamma_0 + 1} \right)$.

Summary

- The region of transparency for both modes is bounded by $\alpha_0^2 = 0$, $\alpha_0^2 = (c^2 - \omega^2 / \epsilon)^{1/2}$.
- Solutions for Q:
 - $Q_1^2 = 1 + \gamma_0^2 / \gamma_0^2$.
 - $Q_2^2 = 1 + \gamma_0^2$.
- $L = \frac{\gamma_0 (\eta + 2)}{\epsilon_0 (\eta - 2)}$.
- Both plasma modes penetrate into the plasma in regions $Q_2^2 < 0 < Q_2^2$ and $Q_2^2 < Q_2^2 < Q_2^2$.
- These modes have X-polarisation with different angles to the magnetic field.

Fig. 1 The factor $J_1[1]$ as a function of plasma thickness for $\omega = 0.9\epsilon_0$.

Fig. 2 Radiation efficiency as a function of the modulation period and radius of plasma column for the cylindrical antenna.

Would You Like to Know More?

This poster and our articles on this theme can be downloaded here: https://yadis.ru/8/3/WBBAthickopor2

About the Author

Volchok Rygenya, a student of Novosibirsk State University, Department of Physics.

- Rygenya-Volchok@yandex.ru

Theory of electromagnetic wave generation via a beam-plasma antenna

Volchok E. P., Timofeev I. V., Annenkov V. V.

BINF SB RAS, Russia

11th International Conference on Open Magnetic Systems for Plasma Confinement, Novosibirsk, 8-12 August 2016

Plane Beam-Plasma Antenna

Inside the plasma, electromagnetic fields $E = E_0 \exp(i\mathbf{k} \cdot \mathbf{x} - i\omega t)$ + c.c. obey

$$\frac{\partial^2 \phi_1}{\partial t^2} - \frac{\phi_1 - \phi_2}{\epsilon_0} = \frac{\omega^2}{\epsilon_0} \left(1 - \frac{\mathbf{k}_0^2}{\epsilon_0} \right),$$

where $\omega = \sqrt{\epsilon_0 \mu_0}$. The current $\mathbf{J} = \epsilon_0 \frac{\omega^2}{\epsilon_0} \mathbf{k}_0^2$. The radiation angle $\theta = \arctan \left(\frac{\gamma_0 - 1}{\gamma_0 + 1} \right)$.

Fig. 3 Geometry of the problem.

Fig. 4 Window of plasma transparency to the generated EM waves ($\nu_0 = \nu_0$, $\delta n = 0.1m_0$, $\nu_0 = 0.2m_0$, $\nu_0 = 0.3m_0$).

Fig. 5 (a) Radiation efficiency as a function of the modulation period and plasma thickness for the plane antenna (for the parameters $n_0 = 0.2m_0$, $n_0 = 0.2m_0$, $L = 0.2m_0$, $\delta n = 0.3m_0$), (b) Transverse structure of electric fields for plasma eigenmodes at the point of the global maximum of η: \mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3.

- The theory of EM emission generated in a thin magnetised plasma with the longitudinal density modulation under the injection of an electron beam has been formulated in terms of plasma antenna.
- It has been predicted that, at certain emission angles, plasma becomes transparent to radiation and the whole plasma volume may be involved in generation of EM waves.
- The relative power remains enough high even for relativistic thick plasma ($\sim 10 - 15\%$).
- The proposed method can be generalised to the turbulent regime in which random fluctuations of plasma density are represented by a set of periodic perturbations of the type $L = \sum_{n} a_n e^{i\omega n}$.