

Physics program and simulations of the STCF experiment

Xiaorong Zhou (on behalf of STCF physics working group) University of Science and Technology of China

Joint Workshop on Future Super charm-tau Factory

2021.11.15

The Standard Model

The standard model of particle physics is a well-tested theoretical framework,

However, the SM has a number of issues need further investigation:

□ The nature of quark confinement

□ Matter-antimatter asymmetry of the Universe

Gravity, dark matter, neutrino masses, numbers of flavors, etc.

19 free parameters of the SM

Masses			Couplings		
Parameter	Value	Method	Parameter	Value	Method
m _u	1.9 MeV	Lattice	α	0.0073	non-collider + collider
m _d	4.4 MeV	Lattice	G_F	1.17x10 ⁻⁵	Non-collider
m _c	1.3 MeV	Collider	$lpha_{s}$	0.12	Lattice + collider
m_b	4.24 MeV	Collider	Flavouranc	CP viola	tion
m _t	173 GeV	Collider	Parameter	Value	Method
m _e	511 keV	Non-collider	A (CKM)	13 10	Collider
m_{μ}	106 MeV	Non-collider		15.1°	Collider
m	1.78 GeV	Collider	θ_{23} (CKM)	2.4°	Collider
	91.2 GeV	Collider	θ_{13} (CKM)	0.2°	Collider
mz	91.2 GEV	conider	δ (CKM-CPV)	0.995	Collider
m _H	125 GeV	Collider	θ (strong CP)	~0	Non-collider

Does not include neutrino masses and mixing angles

QCD coupling strength

Physics in tau-Charm Region

- □ The interplay of perturbative and nonperturbative dynamics
- Unique features: Rich of resonances, Threshold characteristics, Quantum correlation
 - Hadron spectroscopy and QCD
 - ➢ Flavor and CP violation
 - Forbidden/Rare decay and the new particles

Expected data with 1ab⁻¹ at STCF

CME (GeV)	No. of Events
3.097	3 T J/ψ
3.686	500 B ψ '
3.77	3.6 B D ⁰ 2.8 B D ⁺
4.009	0.2 B Ds
4.23	1 B Y(4260) 100 M Zc 5 M X(3872) 3.6 M tau
4.63	$0.5 \text{ B} \Lambda_c$

Fast simulation package

JINST 16 (2021) 03, P03029

McGenEvent

Write to Disk

Read in McGent Evt

Trk Fast Simulation

Create TrkCollection

RecEvent

KKMC+EvtGen

BOOST

Users Analysis

- The FastSim can provide a critical tool for exploring physics requirement and physics performance;
- The FastSim takes the response of physical objects in each sub-detector: resolution, efficiency, helix, error matrix etc.
- ➢ Geant4 free, save time and space
- The package is validated well by comparing fast simulation and BESIII's result

Fast simulation package

JINST 16 (2021) 03, P03029

- ➢ The FastSimu provide flexibly adjusted responses in each sub-system, which is helpful for the optimization of detector design during R&D.
 - RMS of π^0 with different energy/position resolution of photon:

• D tag with different track resolution:

Physics requirements

Physics Process	Physical Interest	Optimized Sub-detector	Requirements	
$ au o K_s \pi \nu_{ au},$	CPV in τ sector,		acceptance: 93% of 4π ; trk. effi.:	
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in hyperon sector,	Tracker	$>99\%$ at $p_T>0.3~{\rm GeV/c};>90\%$ at $p_T=0.1~{\rm GeV/c}$	
$D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \mu\text{m}$ at 1 GeV/c	
$e^+e^- \rightarrow KK + X,$	Fragmention function,	DID	π/K and K/π mis-identification rate < 2%	
$D_{(s)}$ decays	CKM matrix, LQCD etc.	PID	PID efficiency of hadrons > 97% at $p < 2 \text{ GeV/c}$	~
$\tau ightarrow \mu \mu \mu$,	cLFV decay of τ ,	MUC DID	π/μ suppression power over 30 at $p < 2$ GeV/c,	
$D_s \rightarrow \mu \nu$	CKM matrix, LQCD etc.	MUC, PID	μ efficiency over 95% at $p = 1$ GeV/c	
$\tau \rightarrow \gamma \mu$,	cLFV decay of τ ,	EMC	$\sigma_E/E \approx 2.5\%$ at $E = 1$ GeV	
$\psi(3686)\to\gamma\eta(2S)$	Charmonium transition	EMC	$\sigma_{\rm pos} \approx 5 \text{ mm}$ at $E = 1 \text{ GeV}$	
$e^+e^- \rightarrow n\bar{n},$	Nucleon structure	EMC MUC	$\sigma_{\pi} = -\frac{300}{100}$ ps	
$D_0 \rightarrow K_L \pi^+ \pi^-$	Unity of CKM triangle	EMC, MUC	$V_I = \sqrt{p^3 (\text{GeV}^3)} p^3$	

Physics program at STCF

Some Physics Performance

Charmonium (Like) Spectroscopy

Charmonium(Like) Spectroscopy at STCF

- B factory : Total integrate effective luminosity between 4-5 GeV is 0.23 ab⁻¹ for 50 ab⁻¹ data
 τ-C factory : scan in 4-5 GeV, 10 MeV/step, every point have 10 fb⁻¹/year, 5 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency and low background than B Factory

Belle with ISR: PRL110, 252002 967 fb-1 in 10 years running time 70 🔶 data Events / 0.02 GeV/c² 60 Background 50 PHSP MC 40 30 20 n 3.7 3.8 3.9 4.1 4.2 $M_{max}(\pi J/\psi)$ (GeV/c²)

BESIII at 4.260 GeV: PRL110, 252001 0.525 fb⁻¹ in one month running time

Electromagnetic Form Factors

- Fundamental properties of the nucleon
 - charge, magnetization distribution
 - testing ground for models of the nucleon internal structure

Mysteries observed from current experimental results in time-like

Collins Fragmentation Function (FF)

The Q² evolution of Collins FFs was assumed following the extrapolation in the unpolarized FF, and this has not been validated.
BEPCHI

- **D** Low Q^2 data from e^+e^- collider is useful.
- **BEPCII / STCF**
 - Similar Q² coverage with SIDIS in EicC

STCF is a perfect machine for studying Collins effect The statistical uncertainty of $\pi \pi$ / KK Collins with 1ab⁻¹ MC is ~10⁻⁴ to 10⁻³

> [1]. Wang B L, Lv X R, Zheng Y H. Journal of University of Chinese Academy of Sciences, 2021, 38(4):433-441 For more about FFs, please see Yuxiang Zhao's talk on Nov.15th

Precision Measurements of CKM Elements

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- □ A precise test of EW theory
- □ New physics beyond SM?

A direct measurement of V_{cd(s)} is one of the most important task in charm physics

Prospects of $|V_{cs}|$ and $f_{D_s^+}$ in $D_s^+ \rightarrow l^+ \nu_l$

Measuring $b \rightarrow s\gamma$ photon polarization in $D^0 \rightarrow K_1(1270)e\nu_e$

Yulan Fan et al., arXiv:2107.06118 [hep-ex]

- The photon helicity in $b \rightarrow s\gamma$ is predominantly lefthanded and its measurements plays a unique role in right-handed coupled in New Physics.
- Hadronic state helicity in $B \rightarrow K_1(\rightarrow K\pi\pi)\gamma$ <u>Phys. Rev.</u> <u>Lett. 112, 161801 (2014)</u>

 $M_{K\pi\pi}$ in (1.1,1.3) GeV, $A_{UD} = (6.9 \pm 1.7) \times 10^{-2}$

- A novel method is provided to combine the $B \to K_1 \gamma$ and $D \to K_1 l^+ \nu$ to determine the photon helicity $\lambda_{\gamma} = \frac{4\mathcal{A}_{UD}}{3\mathcal{A}'_{UD}} Phys. Rev. Lett. 125, 051802 (2020)$
 - \succ Kinematics for $D^0 \rightarrow K_1(1270)^- e^+ \nu_e \rightarrow K^- \pi^+ \pi^- e^+ \nu_e$

 \rightarrow 2-D χ^2 fit to cos θ_K and cos θ_I

statistical sensitivity 1.8×10^{-2} @1*ab*⁻¹ MC sample For details, please see Yulan Fan's talk on Nov.16th

CPV in τ decay

H. Y. Sang, et al., Chin. Phys. C 45, 053003 (2021)

> The CPV source in $K^0 - \overline{K}^0$ mixing produces a difference in tau decay rate

In Theory:
$$A_Q = \frac{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) - B(\tau^- \to K_S^0 \pi^- \nu_\tau)}{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) + B(\tau^- \to K_S^0 \pi^- \nu_\tau)} = (+0.36 \pm 0.01)\%$$

BaBar experiments : $A_{CP}(\tau^- \to K_S \pi^- \nu \geq 0\pi^0) = (-0.36 \pm 0.23 \pm 0.11)\%$

 2.8σ away from the SM prediction

Theorist try to reconcile the deviation, but not coverage even NP included

CPV in *A* decay

MLL Fitting

Error of I

 A_{CP}

$$\mathcal{W}(\xi) = \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi) + \alpha_1 \alpha_2 (\mathcal{F}_1(\xi) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi)) + \sqrt{1 - \alpha^2} \sin(\Delta \Phi) (\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi)),$$

$$A_{CP} = \frac{\alpha_1 + \alpha_2}{\alpha_1 - \alpha_2}, \qquad P_y = \frac{\sqrt{1 - \alpha^2 \sin \theta \cos \theta}}{1 + \alpha \cos^2 \theta} \sin(\Delta \Phi)$$

 \Box 3.4 trillion J/ ψ events \Rightarrow $A_{CP} \sim 10^{-4}$

- Luminosity optimized at J/ ψ resonance •
- No polarization beams are needed
- Optimized the efficiency of low momentum tracks

 \Box feasibility study of Λ CPV with polarized e+ beam is undergoing

Tandean, Valencia PRD67, 056001

LFV decay of τ at STCF

- Precisely known kinematics of initial state
- Full reconstruction of signal side
- Neutrino in tag side is missing
- ▶ Signal side: $\tau \rightarrow 3 leptons$
- ➤ Tag side: $\tau \rightarrow ev\bar{v}$, $\mu v\bar{v}$, $\pi v + n\pi^0$ (Br = 82%)
- ► Almost background free, the sensitivity : \mathcal{B}_{UL}^{90} ($\tau \rightarrow \mu \mu \mu$)~1/ \mathcal{L}
- > Best efficiency ($\tau \rightarrow \mu\mu\mu$): 22.5% (including tag branching fraction)

STCF with 1ab ⁻¹ : $\mathcal{B}_{UL}^{90}(\tau \rightarrow \mu\mu\mu) < \frac{N_{UL}^{90}}{2\epsilon N_{\tau\tau}} \sim 1.4 \times 10^{-9}$			
Model	Ref.	τ→μγ	τ→μμμ
SM + heavy majorana	PRD 66.034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(3)252	10 ⁻⁹	10 ⁻⁸
SUSY + seesaw	PRL 89:241802	10 ⁻¹⁰	10-7
SM + 4 th generation	arXiv.1006.530	10 ⁻⁸	10 ⁻⁸

LFV decay of τ at STCF

Signal side τ → γμ
Tag side: τ → evv, πv, ππ⁰v(Br = 54%)
Dominant background: e⁺e⁻ → μ⁺μ⁻ and e⁺e⁻ → τ⁺τ⁻, τ⁺ → ππ⁰v, τ⁻ → μvv

- Stringent selection criteria applied to remove the backgrounds
- Efficiency: 4.2%~8.5% depending on loose/strict cut (include tag branching fraction)
- ➤ The sensitivity: $\mathcal{B}_{UL}^{90}(\tau \rightarrow \gamma \mu) \sim 1/\sqrt{\mathcal{L}}$

> STCF with 1ab⁻¹:
$$\mathcal{B}_{UL}^{90}(\tau \to \gamma \mu) < \frac{N_{UL}^{90}}{2\epsilon N_{\tau\tau}} \sim 1.6 \times 10^{-8}$$

For details, please see Teng Xiang's poster on Nov.16th

Summary

Super τ -c Facility (STCF):

 \triangleright e⁺e⁻ collision with E_{cm} = 2 - 7 GeV, L > 0.5 × 10³⁵ cm⁻²s⁻¹

STCF is one of the crucial precision frontier

- rich of physics program
- important playground for study of exotic hadrons, hadron structures, flavor physics, CPV and search for new physics.
- Complementary to Belle-II and LHCb in understanding the QCD/EW models and searching for new physics

Thanks for your attention!

Prospects of Physics Highlights

QCD and Hadronic Physics

not all-inclusive

Physics at STCF	Benchmark Processes	Key Parameters*
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, KZ_{cs}$	$\frac{N_{\rm Y(4260)/Z_c/X(3872)}}{10^{10}/10^9/10^6}$
Pentaquarks, Di-charmonium	$e^+e^- \rightarrow J/\psi p\bar{p}, \Lambda_c \overline{D}\bar{p}, \Sigma_c \overline{D}\bar{p}$ $e^+e^- \rightarrow J/\psi \eta_c, J/\psi h_c$	$\sigma(e^+e^- \to J/\psi p\bar{p}) \sim 4 \text{ fb};$ $\sigma(e^+e^- \to J/\psi c\bar{c}) \sim 10 \text{ fb}$ (prediction)
Hadron Spectroscopy	Excited <i>cc̄</i> and their transition, Charmed hadron spectroscopy, Light hadron spectroscopy	$\frac{N_{J/\psi/\psi(3686)/\Lambda_c}}{10^{12}/10^{11}/10^8}$
Muon g-2	$e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0, K^+K^-$ $\gamma\gamma \rightarrow \pi^0, \eta^{(\prime)}, \pi^+\pi^-$	$\Delta a_{\mu}^{HVP} \ll 40 \times 10^{-11}$
R value, au mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\Delta m_{\tau} \sim 0.012 \text{ MeV}$ (with 1 month scan)
Fragmentation functions	$e^+e^- \rightarrow (\pi, K, p, \Lambda, D) + X$ $e^+e^- \rightarrow (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} < 0.002$
Nucleon Form Factors	$e^+e^- \rightarrow B\overline{B}$ from threshold	$\delta R_{EM} \sim 1\%$

Flavor Physics and CP violation

not all-inclusive

Physics at STCF	Benchmark Processes	Key Parameters*
CKM matrix	$D^+_{(s)} \to l^+ \nu_l, D \to P l^+ \nu_l$	$\delta V_{cd/cs} \sim 0.15\%; \ \delta f_{D/D_s} \sim 0.15\%$
γ/ϕ_3 measurement	$D^0 \to K_s \pi^+ \pi^-, K_s K^+ K^- \dots$	$\begin{array}{l} \Delta(\cos\delta_{\mathrm{K}\pi}) \sim 0.007;\\ \Delta(\delta_{\mathrm{K}\pi}) \sim 2^{\mathrm{o}} \end{array}$
$D^0 - \overline{D}^0$ mixing	$\begin{split} \psi(3770) &\to (D^0 \overline{D}{}^0)_{CP=-}, \\ \psi(4140) &\to \gamma (D^0 \overline{D}{}^0)_{CP=+} \end{split}$	$\Delta x \sim 0.035\%;$ $\Delta y \sim 0.023\%$
Charm hadron decay	$D_{(s)}, \Lambda_c^+, \Sigma_c, \Xi_c, \Omega_c$ decay	$N_{D/D_s/\Lambda_c} \sim 10^9 / 10^8 / 10^8$
γ polarization	$D^0 \to K_1 e^+ \nu_e$	$\Delta A_{UD}^{\prime} {\sim} 0.015$
CPV in Hyperons	$J/\psi \to \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi^- \overline{\Xi}^-, \Xi^0 \overline{\Xi}^0$	$\Delta A_A \sim 10^{-4}$
CPV in $ au$	$\tau \to K_s \pi \nu$, EDM of τ , $\tau \to \pi/K \pi^0 \nu$ for polarized e^-	$\Delta A_{\tau \to K_s \pi \nu} \sim 10^{-3};$ $\Delta d_{\tau} \sim 5 \times 10^{-19} \text{ (e cm)}$
CPV in Charm	$ \begin{aligned} D^0 &\to K^+ K^- / \pi^+ \pi^-, \\ \Lambda_c &\to p K^- \pi^+ \pi^0 \dots \end{aligned} $	$\Delta A_D \sim 10^{-3};$ $\Delta A_{\Lambda_c} \sim 10^{-3}$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Forbidden/Rare decay and New Particle Search

not all-inclusive

Physics at STCF	Benchmark Processes	Key Parameters* (U.L. at 90% C.L.)
LFV decays	$\begin{split} \tau &\to \gamma l, lll, lP_1P_2\\ J/\psi &\to ll', D^0 \to ll'(l' \neq l) \dots \end{split}$	$ \begin{aligned} &\mathcal{B}(\tau \to \gamma \mu / \mu \mu \mu) < 16/1.5 \times 10^{-9}; \\ &\mathcal{B}(J/\psi \to e\tau) < 0.71 \times 10^{-9} \end{aligned} $
LNV, BNV	$\begin{split} D^+_{(s)} &\to l^+ l^+ X^-, J/\psi \to \Lambda_c e^-, \\ B &\to \bar{B} \dots \end{split}$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-11}$
Symmetry violation	$\eta^{(\prime)} \rightarrow ll \pi^0, \eta^\prime \rightarrow \eta ll \dots$	$ \mathcal{B}(\eta' \rightarrow ll/\pi^0 ll) < 1.5/2.4 \times 10^{-10} $
FCNC	$\begin{split} D &\to \gamma V, D^0 \to l^+ l^-, e^+ e^- \to D^*, \Sigma^+ \to \\ p l^+ l^- \dots \end{split}$	$\mathcal{B}(D^0 \rightarrow e^+ e^- X) < 10^{-8}$
Dark photon, millicharged	$e^+e^- \to (J/\psi) \to \gamma A'(\to l^+l^-)$ $e^+e^- \to \chi \bar{\chi} \gamma$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$