New method of measuring the cross-section $e^+e^- ightarrow nar{n}$ near threshold at SCTF

Alex Bondar, Alex Bobrov (speaker) BINP SB RAS, NSU

Workshop of future C-tau factories 2021 15-17 November 2021

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Cross sections $e^+e^- \rightarrow N\bar{N}$ and partial widths $\frac{d\Gamma}{dm_{N\bar{N}}} N\bar{N}$ do not tend to 0 at the threshold.

The low energy range nonperturbative QCD.

Invariant mass resolution σ_W for reactions $e^+e^- \rightarrow N\bar{N}$ depends on the beam energy spread $\sigma_W/m_n \propto \delta E_b/E_b$, $\sigma_W \sim \text{MeV}$.

The figure is take from an article of SND collaboration EPJ Web Conf., 212 (2019) 07007

イロト イポト イヨト イヨト

Method description

To reconstruct the cross-section, angular distribution as a function beam energy and beam energy spread function was studied. The velocity of C.M.S. in lab. frame > 0.

Crab Waist collision scheme $\Theta \sim 0.05, v_{c.m.s.} = \tan \Theta \sim 0.05$

$$\begin{split} W &= \sqrt{(P_0 + \delta P)^2} = W_0 + (P_0; \delta P_{\parallel}) / W_0 + (\delta P_{\perp}^2 + \delta P_{\parallel}^2) / 2W_0 = \\ W_0 + (P_0; \delta P_{\parallel}) / W_0 + O(\delta P^2) \\ v_{c.m.s.} &= \frac{P_0 + \delta P_{\parallel} + \delta P_{\perp}}{\sqrt{(P_0 + \delta P_{\parallel} + \delta P_{\perp})^2}} = v_{c.m.s.}^0 + \frac{\delta P_{\perp}}{W_0} \end{split}$$

Approximation: W invariant mass can vary , but velocity is the same. At the threshold, all particles have singular angular distribution: $\delta(\vec{n} - \vec{v}/|\vec{v}|)$.

Simulation

- $\delta E_b / E_b = 10^{-3}$
- **2** Angular dispersion is 10^{-3} radian
- **③** Half of the beam intersection angle is 0.05 radian
- Seutron/antineutron angular distribution is isotropic
- Seam energy E_b varies from 939.75 to 942.25 MeV, with step 0.25 MeV (threshold $E_b = 940.74$ MeV, $\sigma_W \sim 1.3$ MeV.)
- O Radiative correction is absent
- Antineutron angle reconstruction is ideal
- $\textbf{③} \ \ \text{Antineutron/neutron time life is } \infty$
- Cross section (1 nb) is simulated by the Heaviside function with step value at the energy threshold, except for cases with hypothetical resonances.

Cross section reconstruction

In case $W < 2m_n / \sqrt{1 - v_c^2 m_s} = W^*$ (critical invariant mass), there is maximum scattering angle. $v_{c,m,s} = \tanh \psi W =$ $2m_n\sqrt{1+\sinh^2\psi\sin^2\alpha}\sim$ $\sim 2m_{\rm p} + m_{\rm p} \sinh^2 \psi \alpha^2$ $R = (W^{\star} - 2m_n)/\sigma_W$. If $R \ll 1$, large fraction events are $W > W^{\star}$, good resolution is unavailable for $W < W^*$ region. In our simulation R = 1.75. Workshop of future C-tau factories 2021 15-17 November 2021

Invariant mass resolution due to beam energy spread $\sigma_W = m_n \sinh^2 \psi \sigma_{\alpha}^2(0).$ $\sigma_{\alpha}(0)$ angular spread at $\alpha = 0,$ $\sigma_{\alpha}(0) = \delta p_{c.m.s.} / p_{c.m.s.} \propto \delta E_b / (E_b \sinh \psi).$ So $\sigma_W \propto m_n (\delta E_b / E_b)^2 \sim \text{keV!}$

Invariant mass resolution due to angular resolution $\sigma_W = m_n \sinh^2 \psi \sigma_{\alpha}^2$ $\sigma_{\alpha} = 5 cm / 1 m = 1/20$ $\sigma_W \sim 10 \text{ keV.}$ 5/15

Accuracy of the cross section reconstruction

Cross section (1 nb) is simulated by the Heaviside function with a step value at the energy threshold.

Angular distribution was fitted by a linear function. Cross-sections in invariant mass intervals were minimized. The shapes of the angular distribution in each interval of the invariant mass were obtained from independent simulation.

Relative accuracy varies from ~ 0.1 at keV scale up to $\sim 3 \times 10^{-3}$ at MeV scale.

Accuracy drops down after passing the critical invariant mass.

-

Reconstruction of the resonances

10 pseudo experiments (700 fb⁻¹), simulated cross section and a residual errors as an invariant mass function. a = b + a =

Reconstruction of the resonances

Amplitude consists of two resonances with $\Gamma = 0.1 \text{ MeV} (\phi = 0)$ and continuum contribution.

Reconstruction of the resonances

Three conditions: reference $\delta E = 0, \delta \sigma_W = 0; \ \delta E = 50$ keV $\delta \sigma_W = 0; \ \delta E = 0 \ \delta \sigma_W = 0.1 \sigma_W.$

Analytical solution

To find approximation that allows one to obtain analytical solution? How to obtain the distribution of invariant mass $\frac{dN}{dW}$ from the angular distribution $(\frac{dN}{d\Omega})$ distribution of invariant mass?

- Angular resolution is ideal, efficiency is ideal;
- The velocity of the C.M.S. is constant $\delta P_{\perp} = 0$;
- Events with $W > W^*$ are absent;
- Radiation corrections are absent ;

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

$$\frac{dS}{d\cos\alpha} = \int \frac{dN(W)}{dW} \mathcal{K}(\cos\alpha, W) dW$$

Fredholm integral equation. New variables are
$$z = \frac{\sinh\psi}{\sinh\beta} = \frac{2m_n \sinh\psi}{\sqrt{W^2 - 4m_n^2}}, \ t = \frac{1}{\sin\alpha} z \in [1,\infty) \ t \in [1,\infty).$$
$$\frac{dS(t)}{dt} = \int_1^t \frac{dN(z)}{dz} \frac{\rho(t,z)_{reg}}{\sqrt{t-z}} dz$$

Workshop of future C-tau factories 2021 15-17 November 2021

Analytical solution

$$\frac{dS(t)}{dt} = \int_{1}^{t} \frac{dN(z)}{dz} \frac{\rho(t, z)_{reg}}{\sqrt{t-z}} dz$$

 $\rho(t, z)_{reg}$ is non-singular part, $\rho(t,t)_{reg} > 0$. This is linear Volterra equation of the first kind with weak singularity.

$$\frac{dN(r)}{dr} = \frac{1}{\pi\rho(r,r)_{reg}} \left[\frac{\partial}{\partial r} \int_{1}^{r} \frac{dS(t)}{dt} \frac{dt}{\sqrt{r-t}} - \int_{1}^{r} \frac{dN(z)}{dz} \left\{ \frac{\partial}{\partial r} \int_{z}^{r} \frac{\rho(t,z)_{reg}}{\sqrt{t-z}\sqrt{r-t}} dt \right\} dz \right]$$

$$\sigma(W) = \frac{dN(W)}{dW} \frac{dW}{d\mathcal{L}} \rho(W_{0}; W) = \frac{1}{\sqrt{2\pi\sigma_{W}}} e^{\frac{-(W-W_{0})^{2}}{2\sigma_{W}^{2}}}$$

$$\frac{d\mathcal{L}}{dW} = \int \frac{d\mathcal{L}(W_{0})}{dW_{0}} \rho(W_{0}; W) dW_{0} \text{ If } \frac{d\mathcal{L}(W_{0})}{dW_{0}} = const, \text{ when } \frac{d\mathcal{L}(W)}{dW} = const$$
Optimal scenario of the luminosity data taking?

Workshop of future C-tau factories 2021 15-17 November 2021

σ(

$$\frac{d\sigma}{d\Omega} = \frac{C\alpha^2\beta}{4s} \Big[(|G_m|^2 + |G_e|^2/\tau) + (|G_m|^2 - |G_e|^2/\tau) \cos^2\Theta \Big]$$

 Θ scattering angle in C.M.S. G_m , G_e are magnet and electric formfactors; \sqrt{s} is energy β is velocity of the nucleon in C.M.S. C is final state interaction factor.

There are two contributions in cross section: isotropic and anisotropic.

Anisotropic part of the cross-section can be presented as $\rho(t,z)_{reg}^{aniso} \cos^2 \phi / \sqrt{t-z}$; ϕ is the azimuthal angle counted from orbit plane.

$$\frac{d\sigma}{d\Omega}\Big|_{lab.frame}(\alpha;\phi) = \frac{C\alpha^2\beta}{4s} \Big[(|G_m|^2 + |G_e|^2/\tau) A^{iso}(\alpha) + (|G_m|^2 - |G_e|^2/\tau) A^{aniso}(\alpha) \cos^2\phi \Big]$$

Summary

- New method of the threshold cross-section measurement by studying the angular distribution in lab. frame is presented. This approach gives an opportunity to study the fine structure of the cross-section at scale much smaller the beam energy spread.
- **②** The new approach was tested with MC at $e^+e^-
 ightarrow nar{n}$
- The area of good resolution depends on $v_{c.m.s.}$ $W^* = 2m_n/\sqrt{1-v_{c.m.s.}^2}$ and $R = (W^* 2m_n)/\sigma_W$.
- The sensitivity of the method critically depends on the accuracy of measuring the beam energy spread and beam energy. Contributions from other sources are relatively small.
- We found the analytical solution that allows us to directly reconstruct cross-section from the angular distribution (with some initial approximation). Magnetic and electric formfactors can be separated by studying angular distribution.

$$\frac{d\rho(\alpha,\beta)_{\beta\leq\psi}^{iso}}{d\cos\alpha} = \frac{\Theta(\arcsin\frac{\sinh\beta}{\sinh\psi} - \alpha)(\sinh^2\beta - \sinh^2\psi\sin^2\alpha + \cos^2\alpha\cosh^2\beta\tanh^2\psi)}{\cosh^2\psi\sinh\beta(1 - \cos^2\alpha\tanh^2\psi)^2\sqrt{\sinh^2\beta - \sinh^2\psi\sin^2\alpha}}$$
$$\frac{d\rho(\alpha,\beta)_{\beta>\psi}^{iso}}{d\cos\alpha} = \frac{(\sqrt{\sinh^2\beta - \sinh^2\psi\sin^2\alpha} + \cos\alpha\cosh\beta\tanh\psi)^2}{2\cosh^2\psi\sinh\beta(1 - \cos^2\alpha\tanh^2\psi)^2\sqrt{\sinh^2\beta - \sinh^2\psi\sin^2\alpha}}$$

 $\frac{d\rho(\cos\alpha,\beta)^{iso}}{d\cos\alpha}$ is angular distribution of the isotropic part, α is the angle between boost direction and antineutron momentum, β, ψ are pseudorapidities of the c.m.s in lab. frame and antineutron in c.m.s $(W = 2m_n \cosh\psi)$.

$$\frac{d^2 \rho(\alpha, \phi, \beta)_{\beta \le \psi}^{aniso}}{d \cos \alpha d \phi} = 3G\Theta(\arcsin \frac{\sinh \beta}{\sinh \psi} - \alpha) \Big[\cos^4 \alpha \cosh^4 \beta \tanh^4 \psi + (\sinh^2 \beta - \sinh^2 \psi \sin^2 \alpha)^2 + 6(\sinh^2 \beta - \sinh^2 \psi \sin^2 \alpha) \cos^2 \alpha \cosh^2 \beta \tanh^2 \psi \Big]$$

$$\frac{d^2\rho(\alpha,\phi,\beta)^{aniso}_{\beta>\psi}}{d\cos\alpha d\phi} = \frac{3}{2}G(\sqrt{\sinh^2\beta - \sinh^2\psi\sin^2\alpha} + \cos\alpha\cosh\beta\tanh\psi)^4$$

 $G = \frac{\sin^2 \alpha \cos^2 \phi}{2\pi \cosh^4 \psi \sinh^3 \beta (1 - \cos^2 \alpha \tanh^2 \psi)^4 \sqrt{\sinh^2 \beta - \sinh^2 \psi \sin^2 \alpha}}$

Angular distribution of the anisotropic part ($\frac{d\sigma}{d\Omega} \propto \cos^2 \Theta$). ϕ is the azimuthal angle from orbit plane.