

Inner Tracker for SCTF: status and perspectives

I. Balossino², G. Bencivenni³, M. Bertani³, G. Cibinetto², E. De Lucia³, D. Di Bari³, D. Domenici³, R. Farinelli²,
 G. Felici³, I. Garzia², M. Gatta³, M. Giovannetti³, S. Gramigna², L. Lavezzi²⁻⁴, T. Maltsev¹, M. Melchiorri², G. Mezzadri², <u>G. Morello³</u>,
 V. Kudryavtsev¹, E. Paoletti³, G. Papalino³, M. Poli Lener³, M. Scodeggio², L. Shekhtman¹, A. Sokolov¹, V. K. Vadakeppattu¹

- 1- Budker Institute of Nuclear Physics Novosibirsk State University
- 2- INFN Ferrara
- 3- Laboratori Nazionali di Frascati INFN
- 4- INFN Torino

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

The Novosibirsk Super Charm-Tau Factory Detector

CREMLIN PLUS

Number of background tracks in TPC acceptance (R=3 - 20 cm) within 6 µs

4

Plot #12

10

15

28

-15

≥ 25

TPC studies^{max deviations [1m]}

			IF		blut		3											CDI		
	1234	1682	2065	2075	2060	1992	1796	1593	1424	1268	1161	1083	1028	982	951		2000	CRI		
	1237	1629	1995	2038	2023	1969	1740	1558	1397	1247	1135	1057	1011	970	932		2000	Connecting Russ	ian and Europear	n Measures
25	982	1533	Simu	lation		า ธ ุดส	cencha	rgese	tteets	in1211PC	1112	1039	982	944	920			for Large-sca	ue Research intra	istructures
25	1215	1473	1850	1873	1956	1839	1650	1472	1320	1174	1086	1012	969	918	904		1800			
	1186	1308	1773	1794	1860	1769	1579	1419	1269	1139	1046	967	923	924	870					
	1107	1338	1645	1724	1734	1665	1502	1350	1211		H ₁₉₉ ±40	0% 54 F4	902	Dictrib	ution o	fion c	man don	city is cal	subtod ac	cording to
20	1092	1295	1570 a		de 1645	1609	1447	1290	1 G a	in=1900)OeenBE	=119%8	877		սոծութ	1011-6	In Be and the li	Sity is call	Luialeu ac	coruing to
	755	953	1473	1549	1541	1477	1318	1225	1075	974	910	858	824	backgr	ou nd tr	r <mark>ack d</mark> e	ensity (see	e previous	slides)	
	940	1160	1419	1476	1466	1421	1279	1151	1042	933	857	803	760	Flocific	fiZiPH is	calcul	1400 with		-	
[900	1111	1360	1365	1391	1352	1208	1079	970	874	821	768	729	723	663				-	
	543	912	1214	1302	1287	1211	1084	1021	896	769	747	701	670	Gasagai	n ∓ 7€10	000 to	r all mixtu	ires and I	BF	
15	745	992	1196	1224	1208	1183	1065	937	841	759	695	650	628	593	578		1200			
	676	895	1121	1131	1134	1085	984	866	781	698	676	634	591	599	587					
	538	829	993	1055	1038	954	894	766	672	632	572	543	532	500	492		1000			
	514	790	918	966	953	930	827	708	632	577	531	494	490	466	459		1000			
10	386	657	875	885	878	841	748	675	577	504	519	430	454	Gas	Gas mixture	Ε,	dn _e /dx,	t _{drift} , s	IBF	Max
	372	661	804	805	780	712	649	577	492	455	439	385	395			V/cm	cm ⁻¹	unio		deviation.
	344	622	701	725	713	676	589	502	439	397	360	335	314							mm
10	336	453	641	643	622	558	486	425	386	342	371	285	321							
	153	486	560	563	531	485	423	396	320	282	277	238	227	Ar+1	0%CH ₄	125	90	0.14	1%	94
	285	446	480	483	457	420	361	314	264	229	236	192	197							
	259	311	399	392	365	320	294	230	211	178	161	149	147	Ar+1	Ar+10%CH ₄ + 10%CF ₄		90	0.03	1%	5.0
5	201	307	323	320	415	360	214	184	151	139	123	112	105	10%						
	176	251	243	242	217	190	152	167	114	93	86	77	74		500	90 0.03	0.03	2%	15 1	
	116	163	169	155	145	129	100	105	73	62	56	48	47	AI+10%CH ₄ +			370	13.1		
	63	101	102	96	82	74	59	47	39	32	29	27	25	10%	CF4					
	36	41	39	35	32	28	20	18	15	12	1,1	10	9	Ar+1	5%C₄H ₁₀	1000	112	0.02	1%	2.1
		6	1	8	10	0	1	12		14	-	16		18 +40%	6CF4					
		-		_		_		_						Ar+1 +40%	5%C ₄ H ₁₀ %CF ₄	1000	112	0.02	3%	6.2

High-voltage side

Simulation of spatial resolution in TPC

Garfield++

30 cm of drift

Diffusion and spread of avalanches in 4GEM

Gases:

- Ar+10%CH₄ fast drift at the lowest field, 6 cm/μs at 125 V/cm
- Ar+10%CH₄+10%CF₄ the fastest at moderate field 500 V/cm
- Ar+15%iC₄H₁₀+40%CF₄ the best spatial resolution

Optimal pad size is below 1 mm! We must use InGrid or GEMGrid (pixel chip looking in gas volume with amplifying structure on top)

Status of the TPC prototype

The Cylindrical u-RWELL

The two schemes under study are both based on a B2B layout (a double radial TPC – with a central cathode), characterized by low material budget and modular roof-tile shaped active device

micro-TPC readout mode allowing space resolution of O(100 μm) for inclined tracks

(on the radial view)

"2 - B2B small drift gap" cylindrical detector

N.2 small gap B2B C+layers \rightarrow 1.72% X0 2 × 1 cm gas gap/B2B device 4 cm global sampling gas

"1 - B2B large drift gap" cylindrical detector

N.1 large gap B2B C+layers → 0.86% X0
2 × 1 cm gas gap/B2B device
10 cm global sampling gas

To validate the concept we are designing a single-layer small drift-gap (1 cm) C+RWELL prototype

- From standard **micro-RWELL technology on rigid PCB supports** we are • developing a full flexible detector tile
- **Three of such flexible detector tiles** will be **glued** on **composite/foam roof-tiles**, • then mounted on the **anode cylindrical support**
- A full cylindrical-cathode will close (externally) the detector •

Prototype size

- external diameter ≈20cm
- global length ≈ 100cm •
- active length≈ 60cm

Detector Readout - 1D (present)

Roof tile detector prototype (1D – readout)

Tile detector (1-D)

Strips (1-D)

- Number : 256 X
- Pitch : 0,680 mm
- Width : 0,200 mm

Tails

HV side

- n. 2 for signals
- n. 4 for HV

HV sectors : 4

Global size

- Length : 890 mm
- width: 175,8 mm

Active area

- Length : 600 mm
- width : 174,8 mm

DLC area: $620 \times 175,8 \text{ mm}$

1500₁

13 gradi

30 35

 Angolo (gamma)

70 75 80

Z resolution

Detector Readout – 2D (future R&D)

Assuming $\sigma_x / \sigma_{U-V} \sim 100 \,\mu m$ for the single view (X or U/V), the Z-space resolution depends on the stereo angle.

For $\theta \sim 13^\circ$: for XV ($\sigma_7 \sim 600 \,\mu$ m) – while for UV ($\sigma_7 \sim 300 \,\mu$ m)

Cremlin+ \rightarrow the C+RWELL progress (I)

Boards assembly @ LNF

- Signal Interface board, from HIROSE to PANASONIC
- HV board Interface
- HV Filter board
- HV distribution board

Cremlin+ \rightarrow the C+RWELL progress (II)

The design of the prototype has been completely revised and finalized

• Orders of **flex-detector tiles** (CERN − Rui) done → delivery by the end of November

DONE

DONE

DONE

DONE

- Orders of mechanics/tools (anode/cathode, end-caps, plugs, tiles) done → construction in progress (@LOSON):
- anode mould
- cathode mould
- end-caps/plugs in peek →
- tiles (still) under test ightarrow
- HV, signal interface boards ightarrow
- Detector assembly \rightarrow

DONE Nov – Dec 2021

The C+RWELL simulations

- Inserted 2 small gap back-to-back C+RWELL in DD4HEP framework for SCT detector simulation
- Soft pions studies: momentum threshold for hits in C+RWELL

GEANT4

• Detector response parametrization to be refined with data from recent test beam

Conclusions

- The super Charm-tau farm detector will be equipped with an Inner Tracker based on TPC or cylindrical micro-Resistive WELL technology
- The simulations done by the Budker team suggest that the use of Titanium could sensibly reduce the background
- The TCP prototype construction has started and the field cage is ready
- The micro-RWELL technology is another good candidate for the Inner Tracker due to its low $X_{\rm 0}$
- The envelope of the prototype will be ready around the end of November
- Expected progress in detector simulation due to recent experimental data

Task sharing

Geometry – materials updated

2 SETS OF 2 CHAMBERS BACK-TO-BACK

CAD mechanical drawing

Screenshot from GeoDisplay.py CmuRWELL

	#1	cyc. Support Anode	3320	PILCION
CHAMBER 1	#2	Amplif.	103.1	micron
	#3	Anode 2D	106	micron
	#4	Tile Baseline	3175	micron
	11			
	#5	Gas 1 cm	10000	micron
	11			
	#6	Cyl Support + 2 Cathode	3406	micron
	11			
2	#7	Gas 1 cm	10000	micron
HAMBER	11			
	#8	Tile Baseline	3175	micron
	#9	Anode 2D	106	micron
	#10	Amplif.	103.1	micron
U	#11	Cvl. Support Anode	3328	micron

CmuRWELLGeom geo.xml

Sensitive material

Ar - CO2 - CF4 (45% - 15% - 40%)

Passive materials

- copper
- Kapton
- glue
- FR4 → vetronite
- MILLIFOAM
- Diamond Like Carbon
- Pre-preg (106) •
 - \rightarrow 70% glue + 30% fiberglass

GEANT4 MC points registered in each gas gap = 1 cm → 4 cm global sampling gas → readout with µTPC reconstruction

Update

- Inserted FR4 and HONEYCOMB new materials in DetectorDescription/DetBase/xml/Materials/material_mixture.xm
- correct material \leftrightarrow layer description
- MILLIFOAM still missing (need chemical formula), for now 4 replaced with HONEYCOMB