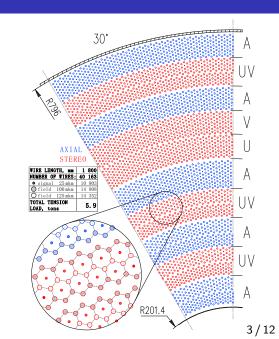

BINP R&D on DC with hexagonal cell

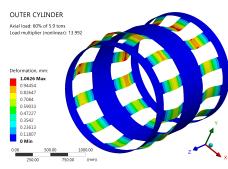
DC group of BINP

BINP

The outline

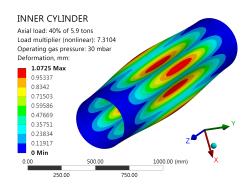

- The Drift Chamber
- The wires
- Geometry optimization
- Momentum resolution
- The small prototype of DC
- Summary

- . Vacuum pipe
- 2. Inner tracker
- Drift chamber
 PID
- 5. Calorimeter
- 6. SC magnet
- Muon system


The Drift Chamber

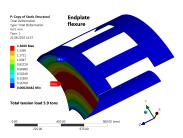
- Shape hexagonal
- 41 layer are divided into 10 superlayers
- Average radius \sim 7 mm
- Gas mixture $He/C_3H_8 60/40$
- Gas gain $\sim 4*10^4$
- Voltage \sim 2200 V
- \bullet Drift time \sim 350 400 ns
- $\sigma \sim$ 90 μm
- $\frac{\sigma_{dE/dx}}{dE/dx} \sim 7 \%$

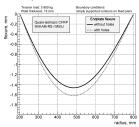
The outer tube


- To facilitate the wiring the outer tube is provided with 24 windows
- The outer tube has a cylindrical shape (CFRP material)
- The wall thickness is 4.5 mm $(X/X_0=2.1\%)$
- The load of wire tension 3.54 tons (maximum deformation is about 80 μ m)
- Stability safety factor is about 14

The outer tube simulated in ANSYS

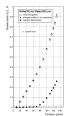
The inner tube

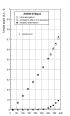

- The inner tube of CFRP has a cylindrical shape
- The wall thickness is 0.9 mm $(X/X_0 = 0.46\%)$
- The load of wire tension is about 2.36 tons (maximum deformation is about 20 μ m)
- Stability safety factor is 7.3

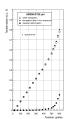

The inner tube simulated in ANSYS

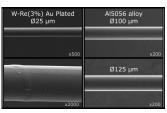
The endplate

- Holes drilled in the endplate result in an increase in flexure of about 10 %
- Endplate is flat
- The thickness is 13 mm (material CFRP, $X/X_0 = 5.9\%$)
- The full load is about 5.9 tons (maximum deformation is about 1.6 mm)

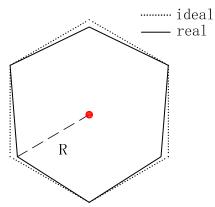

The endplate simulated in ANSYS




Endplate deformation as a function of radius


Wires

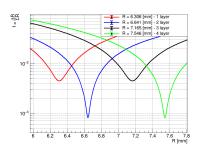
- Anode wire 25 μm in diameter W-Re(3%) Au Plated (tension \sim 60 g)
- Two type of cathode wires 125 (tension \sim 220 g) and 100 μm Al (tension \sim 140 g)
- Anode wire has been made in LUMA (Sweden)
- Cathode wires have been made in Danyang Litong Cable Technology Co.,Ltd (LT Cable Technology, China)
- Mechanical tests have been made


Wires

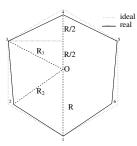
Project of cylindrical magnetron sputtering apparatus

Optimization of cell structure

- Due to imperfections of hexagonal shape ⇒ deviation of the electric field from cylindrical symmetry at the wire
- Solution ⇒ cells structure optimization

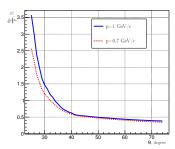


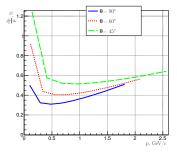
Distortion of cells from hexagonal shape


Wire structure optimization

 The development of cell structure was carried out sequentially layer by layer. The wire positions in the cell were optimized for each layer:

$$f = \frac{\sqrt{(R - R_2)^2 + (R - R_3)^2 + (R_2 - R_3)^2}}{R + R_2 + R_3}$$

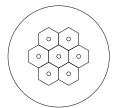

Dependence of f as a function of R for the first superlayer


Definition R, R_2 , R_3

Momentum resolution

The toy simulation of pions flight through DC was performed;

Momentum resolution as a function of polar angle


Momentum resolution as a function of full momentum

dE/dx resolution $\sigma_{dE/dx}\sim7\%$ was estimated from CLEO dE/dx resolution and comparable with Belle(6.9%) and BaBar(7.5%)

The article has been published: https://doi.org/10.1016/j.nima.2021.165490

The small prototype of DC

- Diameter 70 mm
- Length 300 mm
- 7 hexagonal cells
- Measurements of spatial resolution and aging tests are planned there
- The trigger consists of two aerogel scintillation counters
- Has been tested on cosmic rays

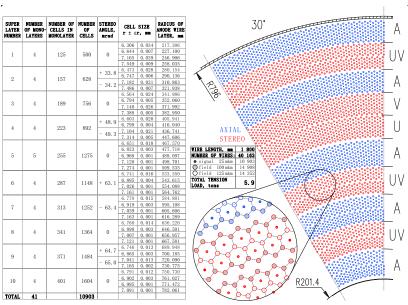
Layout of cells in the prototype

Photo of the Prototype

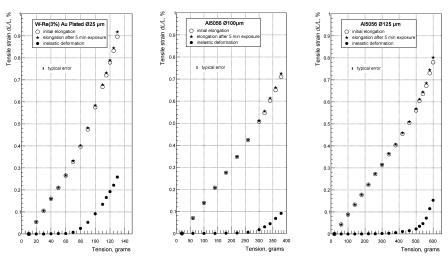
Photo of the scintillation counters

Summary

- The MC simulation has been done
- The preliminary calculation of the DC construction has been completed in ANSYS
- Mechanical tests have been carried out
- The article about the DC has been published in NIM


In the near future we plan:

- To perform aging tests on wire samples on the small prototype
- To perform spatial resolution measurements on the small prototype
- ullet The full size drift chamber prototype creation (\sim 150 cells, 3 superlayers)


THANK YOU FOR YOUR ATTENTION!

BACKUP

Drift Chamber

Wires tests

Mechanical tensile testing of wire

Wires properties

	W-Re(3%) Au Plated 25 μm in dia.	Al5056 alloy 100 μm in dia.	Al5056 alloy 125 μm in dia.	
Manufacture Date	2019-04-03	2019-06	2019-06	
Wire Type	861/67	-	-	
Diameter (rating)	25 microns	100 microns	125 microns	
Diameter Tolerance (±)	2%	2 microns	2 microns	
Straightness grade	1	-	-	
Ovality	2%	-	-	
Measured Properties*:				
Diameter, microns	25.0 ± 0.2	102 ± 1	126 ± 1	
Linear Density**, mg/m	9.4	21.6	32.9	
Yield Strength, g	65 ± 5	240 ± 20	360 ± 20	
Young's Modulus, GPa	381 ± 1	70 ± 2	70 ± 2	
Tensile Strength, g	140 ± 5	400 ± 20	600 ± 20	
Elongation (before breaking), %	> 0.92	> 0.72	> 0.8	

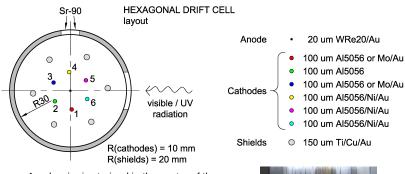
^{*}Based on samples taken from the first 10 meters of wire length on the spool.

^{**}Calculated mean value using the material density from the specification.

Similar experiments

		-			-		
Characte-	Detector						
ristics	CLEOIII	BaBar	BESIII	Bellell	SCTF		
B,T	1.5	1.5	1.0	1.5	1.5		
N_{cells}	9796	7104	6796	14336	10903		
Shape	Square	Hex.	Square	Square	Hex.		
Anode wire d , mkm	W 20	W 20	W 25	W 30	W-Re(3 %) 25		
Field wire d , mkm	Al 110	Al 120	Al 110	Al 126	Al 100, 125		
Size mm × mm	14×14	18 × 12	12×12 16×16	7×7 10×10	~ 14 × 14		
Gas	He/C_3H_8	He/iC_4H_{10}	He/C_3H_8	He/C_2H_6	He/C_3H_8		
mixture	60/40	80/20	60/40	50/50	60/40		
$V_{\sf anode}, {\sf B}$	1900	1930	2200	2300	2200		
T/D, ns/mm	~ 300/7	~ 500/9	~ 350/8	~ 350/8	~ 350/7		
σ , μ m	110	120	120	~ 120	~ 90		

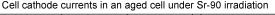
Gas mixtures

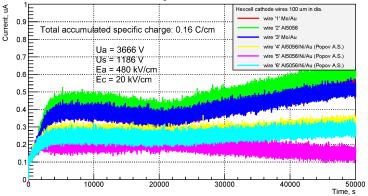

Gas mixture	Ratio	X_0 , m	N_p , $\frac{1}{cm}$	$\begin{array}{c} V_{dr},\\ \underline{cm}\\ \mu s \end{array}$	$\frac{D_l,}{\mu \text{m}} \\ \frac{\sqrt{\text{cm}}}{\sqrt{\text{cm}}}$	Experiment
He/iC_4H_{10}	80/20	807	21.2	2.79	141	BaBar
He/iC_4H_{10}	90/10	1313	12.7	2.31	162	Kloe
He/C_3H_8	60/40	569	31	3.06	133	CLEOIII BESIII
He/C_2H_6	50/50	686	22.9	3.52	142	Belle BelleII
He/CH_4	80/20	3087	7	2.54	172	Kloe
Ar/C_2H_6	50/50	178	34	5.27	143	CLEOII
He/DME	70/30	678	21	1.12	123	-

Characteristics of different gas mixtures at B = 0 T, E = 1 kV/cm

Stereo layers

SCT	SCTF		BELLE II		BaBar		BES III	
R mm	$lpha_{ m stereo}$ mrad	R mm	$lpha_{ m stereo}$ mrad	R m	$lpha_{ m stereo}$ mrad	R mm	$lpha_{ extsf{stereo}}$ mrad	
280.154	+33.8	257.0	+45.4	_	_	327.5	-30.68	
290.136	-34.2	348.0	+45.8	318.5	+44.9	334.1	-31.31	
405.941	+48.9	_	_	370.5	-52.3	402.1	+31.41	
416.040	-49.3	476.9	-55.3	480.8	+55.6	415.5	+32.46	
533.350	+63.1	566.9	-64.3	533.2	-62.8	531.7	-42.06	
584.801	-63.4	_	_	_	_	583.0	+40.37	
689.948	+64.7	695.3	+63.1	643.0	+65.0	676.3	-41.62	
730.775	-65.0	785.3	+70.0	695.2	-72.1	_	_	


Aging tests. Wire arrangement



- Anode wire is strained in the center of the chamber.
- High voltages of positive polarity are applied to the anode and shield wires.
- The cathode wires are grounded.
- In one study three bare (Al5056 unplated) cathode wires were strained, in another study only one wire, while two neighboring ones were replaced by reference gold-plated wires (Mo/Au).

Aging tests. Results

- The time dependence (increase) of currents after irradiation of the cell with a dose of 0.16 C/cm is shown.
- The current on the middle gold-plated (cathode '5') wire is more than 2 times less than on the unplated one (cathode '2').