Simulation, Reconstruction and R&D for the STCF EMC

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics, China

University of Science and Technology of China

On behalf of STCF Calorimeter working group

Outline

Motivation

- ≻STCF EMC
 - ➤Conceptual Design
 - EMC performance
 - Electronics design
 - Some test results

➤ Summary

What kind of Calorimeter do we need

Super T-C Facility (STCF)

- > $E_{cm} \approx 2 7$ GeV, luminosity ~1×10³⁵ cm⁻²s⁻¹ at 4 GeV
- ➤ ~600 m double ring

STCF EMC Requirements

- High Event Rate
 - About MHZ background event rate
- Precise Energy Resolution
 - ➢ Better than 2.5% @ 1GeV
- Good Time Resolution
 - ≻ 300 ps @ 1 GeV

Workshop on future Super c-tau factories 2021

EMC Design — Crystal Selection

Total absorption calorimeter

pCsI crystal + APD photo-device

	1 1		I		I	
Crystal	Pure Csl	LYSO	GSO	YAP	PWO	BaF:Y
Density (g/cm³)	4.51	7.40	6.71	5.37	8.30	4.89
Melting Point (°C)	621	2050	1950	1872	1123	1280
Radiation Length (cm)	1.86	1.14	1.38	2.70	0.89	2.03
Moliere Radius (cm)	3.57	2.07	2.23	4.50	2.00	3.10
Refractive index	1.95	1.82	1.85	1.95	2.20	1.50
Hygroscopicity	Slight	No	No	No	No	No
Luminescence (nm)	310	402	430	370	425	300
					420	220
Decay time (ns)	30	40	60	30	30	600
	6				10	1.2
Light yield (%)	3.6	85	20	65	0.3	1.7
	1.1				0.1	4.8
Dose rate dependent	No	No	ТВА	ТВА	Yes	No
D(LY)/dT (%/°C)	-1.4	-0.2	-0.4	ТВА	-2.5	TBA
Experiment	KTeV				CMS	
	Mu2e				ALICE	
					PANDA	

Workshop on future Super c-tau factories 2021

EMC Design

- Barrel has 6732 crystals, which are arranged in 51 circles with 132 bars in each circle.
- Each endcap has 969 crystals

Defcous design

Workshop on future Super c-tau factories 2021

EMC Performance study using OSCAR

 π^0 cluster (two photons)

 $0.1 \text{ GeV} \gamma$ energy reconstruction

Workshop on future Super c-tau factories 2021

EMC Energy Response

- Energy Resolution
 - Light yield: 100 pe/MeV
 - Support materials: carbon fiber: 200 um
 - Crystal light collection uniformity: \pm 5%
 - Energy deposition of Secondary particles incident on APD
 - Electronics noise: 1 MeV

- The energy linearity is good from 50 MeV to 3.5 GeV without correction, the energy leakage is not obvious after 2.5 GeV
- The energy resolution is about 7.0% @ 50 MeV, and <u>2.2%@1GeV</u>. At about 1GeV, the energy resolution began to enter the plateau area.
 After 2GeV, it seemed to become worse, but it was not significant.

EMC Position Resolution

- Position Resolution
 - Barycenter method was used to reconstruct the incident position
 - Two different weights were compared, the position resolutions are very close
 - Linear weight, Log weight
 - The position resolution is about 5mm @ 1GeV while the crystal end size is about 50 mm.

Upstream Material Influence

- upstream materials will affect the performance of the EMC
 - Compared the effects of different upstream mass on energy resolution
 - With the increase of material quality, the energy resolution gradually becomes worse
 - When the material mass exceeds 30% X_0 , the resolution is larger than 2.3%,

Upstream Material Influence

 In STCF baseline geometry, the EMC upstream mass is set to 30% X₀ (barrel), mainly from PID detector, and is about 80% X₀ in endcap, mainly due to MDC

* ⁹⁰F

80

70

60 50

40 30

20

STCF CDR

MDI

MDC

PID

Upstream materials

Pileup study

- High luminosity introduces high background, which will cause pileup and affect energy reconstruction
- The background rate is about several MHz in the position of EMC
- Most of the energy is less than 10 MeV

Multi-wave fitting

• The fit minimizes the χ^2 defined as:

$$\chi^2 = \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)^T C^{-1} \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)$$

Where:

the vector \vec{S} comprise the 40 readout samples; the vector $\vec{p_j}$ are the pulse templates; the A_j are the pulse amplitudes the covariance matrix **C** is currently only associated with the electronics noise.

The technique of nonnegative least square is used to minimize the χ^2 , with the constraint that the fitted amplitudes A_j are all nonnegative.

Noise: 0 MeV Data: Signal: 20 MeV, Start Time: 0 ns Background: 1 MeV, Start Time: 50 ns Fit Result: Signal: 20 MeV, Start Time: 0 ns Background: 1 MeV, Start Time: 50 ns

Workshop on future Super c-tau factories 2021

13

Multi-wave fitting

- The energy resolution becomes 2.47% after multi-wave fitting, which is greatly improved compared with the previous 5.05%
 - Without background: 2.15%
 - With background: 5.05%
 - Multi-wave fitting: 2.47%

Detector element

pCsl crystal

- The fluorescence main peak is at about 310 nm
- ➤ The transmission is about 40% @ 310 nm
- The reflection coefficient of reflective film
 - Teflon material is close to 100% @ 310 nm

> APD type

➤ HAMAMATSU, S8664-55 vs. S8664-1010

Workshop on future Super c-tau factories 2021

Electronics

- High precise energy measurement
 - CSA-based readout design
- High dynamic range
 - dual gain readout
- Time measurement
 - Leading edge and waveform fitting

Front end board

Back end board

Workshop on future Super c-tau factories 2021

Electronics test – linearity I

High gain linearity

- High gain: 28.76 Code/fC, Low gain: 0.82 Code/fC
- Dynamic range: ~2000 fC
- Noise
 - 0.16 fC (5*5 APD),
 - 0.38 fC (10*10 APD)

Low gain linearity

Workshop on future Super c-tau factories 2021

APD Response – Linearity II

- An LED test system was used to calibrate the linearity of APD
- The results show that APD can respond linearly to the upper limit of low gain electronics

CSA-Time Measurement I

- Leading edge time measurement
 - An LED test system was used to test the time resolution
- APD type: 1010
- The time resolution is about 150 ps @ 1 GeV equivalent energy

CSA-Time Measurement II

- FPGA waveform fitting method was also studied
- fit the waveforms before and after forming, and the resolutions are 171 ps and 496 ps @ 1 GeV respectively

Cosmic Test I

Silicone coupling between pCsI 4 APDs (S8664-0505) •

~54 p.e/MeV

~47 p.e/MeV

Workshop on future Super c-tau factories 2021

2021/11/17

21

LowGainPeak

Cosmic Test II

- S8664-55 vs. S8664-1010
- The light yield of 1010 APD is about 3 times as much as 0505
- With NOL-9 WLS material, the light could reach 220 pe/MeV

NOL-9 WLS

~220 p.e/MeV

~156 p.e/MeV

Workshop on future Super c-tau factories 2021

How to evaluate high background in laboratory

- The background particles are simulated by LED
- The background information is sampled according to the simulation
- Using MATLAB to generate the driving files
- Input to the pulse generator, and generate the driving pulse
- excite the led to emit light, which is transmitted to the APD coupled with pCsI crystal

Workshop on future Super c-tau factories 20212021/11/17

Summary

- We illustrate the design of EMC detector for the future STCF program.
 - High luminosity, precise energy resolution, good time resolution...
- The baseline design of the EMC was done
 - pCsI + APD + CSA electronics
 - The preliminary MC results show that this design could meet STCF requirements
- Readout electronics is designed for pcsI + APD unit
 - The equivalent noise is about 1 MeV (100 pe/MeV)
 - Time resolution could reach 150 ps @ 1 GeV (without crystal)
- The cosmic results show the L.Y could reach ~ 220 pe/MeV
- The pileup study in laboratory will continue

backup

Workshop on future Super c-tau factories 2021

Single wave fitting

• The fit minimizes the χ^2 defined as:

$$\chi^2 = \left(A \cdot \vec{p}(t-\tau) - \vec{S}\right)^T C^{-1} \left(A \cdot \vec{p}(t-\tau) - \vec{S}\right)$$

Where:

the vector \vec{S} comprise readout samples; the vector \vec{p} are the pulse template; the *A* is the pulse amplitudes;

the τ is the time offset between template and real waveform;

the C is the noise correlation matrix.

Compared with MultiFit:

- No huge computing power is required
- No accurate trigger is required
- A possible timing technical route

Workshop on future Super c-tau factories 2021

How to evaluate high background in laboratory

- The background particles are simulated by LED
- The event rate and amplitude of the background are sampled by the distribution obtained by simulation
- LED driver
 - The LED light waveform is controlled consistent with pCsI crystal

