

A hybrid muon detector design with RPC and plastic scintillator for the experiment at the Super Tau-Charm Facility

Zhujun Fang USTC

On behalf of the STCF detector working groups

Outline

1. Introduction

- 2. Detector design and optimization
- 3. Performance simulation
- 4. Summary

Requirements for MUD

Muon identification

Neutral hadron detection and identification

Major background: pion

Momentum range: 0-2.0 GeV/c

Major background: photon

Momentum range: $\sim 0.2-1.2 \text{ GeV/c}$

Requirements for MUD

MUD design requirements:

High muon identification efficiency

```
i.e.: 0.4 GeV/c<p<1 GeV/c: as high as possible p>1 GeV/c: ε>95%@97%pion rejection rate
```

- Auxiliary neutral hadron detector (to be a good support to ECAL)
- Good background tolerance, with L=10³⁵ /cm²/s
- 1~2 cm spatial resolution
- High robustness, simple structure, acceptable cost with ~1000 m² area

Outline

- 1. Introduction
- 2. Detector design and optimization
- 3. Performance simulation
- 4. Summary

MUD alternative detector choice

Resistive Plate Chamber (RPC)

- Low background interference
- Low cost with large detection area
- Not sensitive to neutral particles
- Low rate capability for Glass-RPC

Donomoton	Mode	Bakelite-	Glass-
Parameter	Mode	RPC	RPC
Bulk Resistivity		10^{10} - 10^{12}	>1012
$[\Omega \cdot cm]$		1023-1022	>10-2

Streamer

Avalanche

Plastic Scintillator detector

- Sensitive to neutral particles
- High rate capability
- Easy to maintain
- More background response

Mech perforn

Rate capability

[Hz/cm2]

Compromise: background and efficiency

100@95%

Noise rate

Streamer

100@92%

10 k

STCF MUD background level

Full simulation on STCF background:

- RBB scattering, two-photon process
- Touschek effect, coulomb scattering, bremsstrahlung

Background level:

~10 Hz/cm² in Barrel

~40 Hz/cm² in Endcap

Detector response simulation

Background sensitivity simulations

Neutron sensitivity simulations

 Scintillator-MUD has 10.7 times higher background counting rate. RPC-MUD merely has no neutron detection efficiency.

Detector response simulation

• Even with background removing algorithm, the muon detection efficiency with plastic scintillator is lower than bakelite-RPC with ~10% in range of

202 [0.47, 0.7] GeV/c.

STCF MUD baseline design

STCF MUD:

- bakelite-RPC in inner part
- plastic scintillatorin outer part

Iron yoke and detector layers

Alternative:

- 50-60 cm thick iron
- More layers of detector
- Simple structure

Final choice:

- 51 cm thick iron
- 10 layers of detector in total

Arrangement of detectors

Alternative:

- 2-4 layers of bakelite-RPC
- 8-6 layers of plastic scintillator

Final choice:

- 3 layers of bakelite-RPC
- 7 layers of plastic scintillator

• potential fluctuations in the background level or the future upgrades of STCF

2021/11/17 Workshop on future Super c-tau factories 2021

12

Detector granularity & neutron shielding

4 cm of bakelite-RPC strips
 and plastic scintillator width

• 5 cm lead and 10 cm boron-doped polyethylene (10 wt.% of ^{nat}boron)

STCF MUD conceptual design

Detector layer

Yoke thickness[cm]

 $(\lambda = 16.77cm)$

10

4/4/4.5/4.5/6/6/6/8/8

Occupancy

 $94\% \times 4\pi$ in total

Detection area $[m^2] \sim 1237$ in total

 $Total \begin{array}{c} 51 cm, \ 3.04 \lambda \\ \text{Workshop of future Super c-tau factories 2021} \end{array}$

Outline

- 1. Introduction
- 2. Detector design and optimization
- 3. Performance simulation
- 4. Summary

Muon identification

- Mainly focused on muon with momentum in range [0.4 GeV/c, 1.5 GeV/c]
- Using BDT algorithm with 14 variables (size and shape parameters of track)
- The MUD hits should be identified as track first (be matched with MDC/ECAL hits)

BDT variables definition

Parameter	Definition
E _{ecal}	Energy deposited in ECAL
$L_{distance to ip}$	Distance from track's last hit to IP
T_{time}	Detected time of track in the first detector layer
$N_{ m maxhitlayer}$	Layer number that has the maximum hits
N _{lastlayer}	Layer number that has the last hit
$\mathcal{L}_{\text{meandistance}}$	Mean distance from each two neighborhood hits in the track
$N_{totalhit}$	Total hit amount in 10 layers of detector
$N_{first3hit}$	Hit amount in the first 3 layers of detector
$N_{last7hit}$	Hit amount in the last 7 layers of detector
$N_{ m noisthit}$	Hit amount that was identified as background
A_{theta}	Reconstructed polar angle of the track in R-Z plane
${ m A}_{ m phi}$	Reconstructed azimuth of the track in X-Y plane
Q_{tc}	Reconstructed type of hits (track, cluster, single point)
Q _{track}	Quality of the track

Muon identification simulations

Zenith direction:

- $0.7 : <math>\varepsilon > 90\% @ 97\% \text{ pion rejection rate}$
- p>0.8 GeV/c: ε >95%@97%pion rejection rate

Neutral hadron identification

- Mainly focused on neutron/KL with momentum [0.2 GeV/c, 1.2 GeV/c]
- Using BDT algorithm with 24 variables (size and shape parameters of MUD cluster, shape of ECAL cluster)
- The MUD hits should be identified as **cluster** first (no corresponded hits in MDC, few energy deposit in ECAL)

- ~30% of neutron won't get showed in ECAL
- ~40% of neutron deposits few energy in ECAL (<10 MeV, including 0)

MUD focuses on these neutral hardon

BDT variables definition

Parameter	Definition	
${ m E_{ecal}}$	Energy deposited in ECAL	
$\mathcal{L}_{ ext{distancetoip}}$	Distance from cluster's last hit to IP	
T_{time}	Detected time of cluster in the first detector layer	
$N_{ m maxhitlayer}$	Layer number that has the maximum hits	
$N_{lastlayer}$	Layer number that has the last hit	
$\mathcal{L}_{\text{meandistance}}$	Mean distance from each two neighborhood hits in the MUC cluster	
$N_{totalhit}$	Total hit amount in 10 layers of detector	
$N_{\rm first3hit}$	Hit amount in the first 3 layers of detector	
$N_{last7hit}$	Hit amount in the last 7 layers of detector	
$N_{noisthit}$	Hit amount that was identified as background	
$N_{ m scintillator center}$	The mean layer number of scintillator hits	
$N_{belowscintillatorcenter}$	Scintillator hit amount that below the center of all the scintillator hits	
$\mathcal{L}_{\text{meanscintillatordistance}}$	Mean distance from point of scintillator hit to the center of scintillator hits	
$\mathcal{L}_{ ext{stdscintillatordistance}}$	Standard deviation of distance from point of scintillator hit to the center of scintillator hits	
$N_{ m mdc}$	Hit amount in MDC	
Necal	Hit amount in ECAL	
Q_{tc}	Reconstructed type of hits (track, cluster, single point)	
$R_{1/3}$	ECAL energy deposited ratio between maximum crystal and 3×3 array	
$R_{1/5}$	ECAL energy deposited ratio between maximum crystal and 5×5 array	
$R_{2/3}$	ECAL energy deposited ratio between 2×2 and 3×3 array	
$R_{2/5}$	ECAL energy deposited ratio between 2×2 and 5×5 array	
$R_{3/5}$	ECAL energy deposited ratio between 3×3 and 5×5 array	
2021/11 SOM3	Second-order moment of energy deposition in the 3×3 ECAL crystal array	2
SOM5	Second-order moment of energy deposition in the 5×5 ECAL crystal array	

Neutral hadron identification

• If neutrons survive after penetrating the ECAL (or depositing a small amount of energy in the ECAL):

average ε>95% @97% photon rejection rate

BDT parameter feature importance

Neutral hadron identification

- Hit amount that was identified as background
- Distance from track's last hit to IP

Outline

- 1. Introduction
- 2. Detector design and optimization
- 3. Performance simulation
- 4. Summary

Summary

A hybrid MUD design is researched for STCF:

- 3 layers of bakelite-RPC and 7 layers of plastic scintillator
- Parameters are optimized: iron thick, detector layer number and layout, detector granularity, and neutron shielding layer
- Muon identification efficiency: p>0.8 GeV/c, ε>95%@97% pion rejection rate
- Neutral hadron identification efficiency: ϵ >95% @97% photon rejection rate & low E_{dep} in ECAL

THANKS FOR YOUR ATTENTION