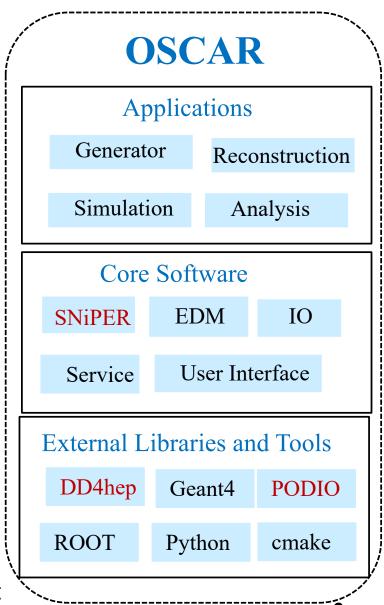
Status of STCF Software

Xingtao Huang (SDU)

On behalf of STCF software group


The 2021 Workshop on future Super c-tau factories November 15-17, 2021 (online)

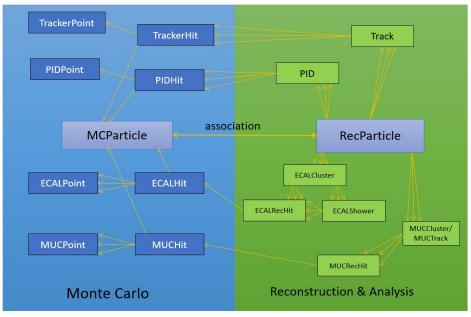
Outline

- Introduction
- Core software (EDM)
- Detector Geometry and Simulation
- Reconstruction Algorithms
- Validation System
- Visualization Tool
- Summary and Future Plan

Introduction

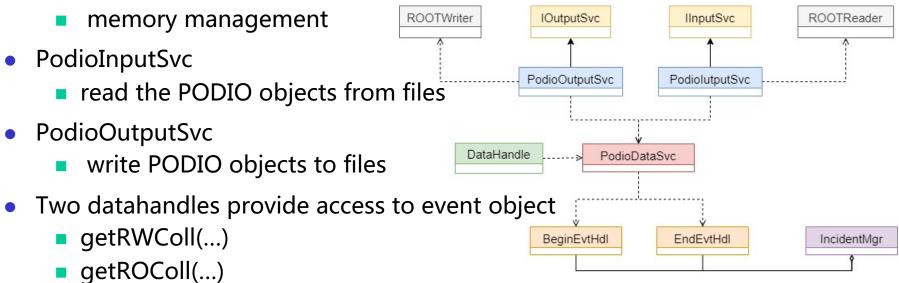
- The Offline Software of Super Tau-Charm Facility (OSCAR) was developed based on SNiPER framework since Oct. 2018.
 - Core software
 - Applications
 - External libraries and tools
- SNiPER
 - a light-weight framework
 - support both collider and non-collider HEP Exp.
 - adopted by JUNO, LHAASO, nEXO
 - define interfaces to all software components and controls their execution.
- Partially based on Key4hep
 - PODIO: a generic event data model toolkit
 - DD4hep: a common geometry description toolkit

Development environment


- Supported Operating System: SLC 7 and CentOS 7
- Programming Language: C++ 11, Python 2.7
- Configuration Language : Python
- Software Management Tool : CMake
- Version Control Tool : Gitlab
 - The webpage: <u>http://202.141.163.203:8009/oscar</u>
 - 15 developers part-time working on development of OSCAR
 - The pull-request mechanism is used to synchronize all developers' work

Users' Guide: <u>http://202.141.163.203:8009/oscar/documents</u>

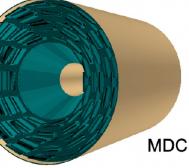
🡐 GitLab Projects ~ Groups ~	More ~	Search or jump to	a d h. ~ E 6. ~ ()
O offline	Name	Last commit	Last update
Project overview	CommonSvc	Podio cmake	5 months ago
Details	DataManagement	Update PodioDataSvc.cc	1 week ago
Activity	🖿 DataModel	fix CanTrack	1 month ago
Releases	🖿 Database	Podio cmake	5 months ago
Repository	🖿 Examples	add Example packages for podio and cmake	4 months ago
D Issues	GDML_Geometry	add extrapolation of muc	1 day ago
Merge requests 0	🖿 Generator	fix a const cast problem	1 month ago
CI/CD	🖿 Mdc	new geo svc	1 day ago
Security & Compliance		Merge branch 'master' into 'master'	18 hours ago
Operations	Simulation	Merge branch 'master' into 'master'	18 hours ago
Packages & Registries	🖿 Utilities	Podio cmake	5 months ago
- Analytics	Validation/Valprod	rename the exec	5 months ago
🖸 Wiki	🖿 cmake	update cmake rules	4 months ago
	截屏 🔷 .gitignore	add extrapolation of muc	1 day ago

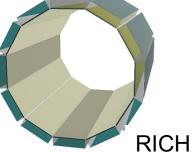

Event Data Model: updated from ROOT to PODIO

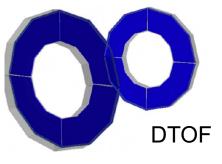
- PODIO: new Event Data Model toolkit developed by HEP communality, and used by FCC, CEPC, SCT...
 - Simple memory model
 - support concurrency when design
 - excellent I/O : ROOT, SIO , HDf5
- With PODIO, common core classes is described in YAML file and C++ code is automatically generated
- Re-designed EDM with PODIO for simulation and reconstruction
 - EDM for each sub-detectors is implemented separately with no inheritance relationship
 - Build up one to one/many relations between different POD objects

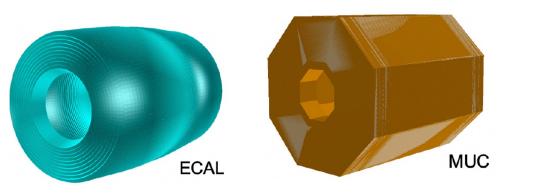
Event Data Management System

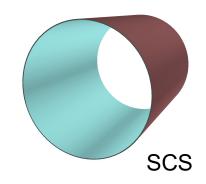
- Developed a new EDM system to integrate PODIO within OSCAR
 - PodioDataSvc




ITDHitCollection*	<pre>itdhits = getROColl(ITDHitCollection, "ITDHitColl");</pre>
ECALHitCollection*	<pre>ecalhits = getRWColl(ECALHitCollection, "ECALHitColl");</pre>
ECALPointCollection*	ecalpoints = getRWColl(ECALPointCollection, "ECALPointColl")


Detector Geometry Description


- The Full STCF Detector is described with DD4hep
 - Use a single source for detector simulation, reconstruction and visualization
 - Each sub-detector is implemented with a single compact file
 - The version number is used for different design options
 - Optimizing the detector geometry according to changes of the detector design



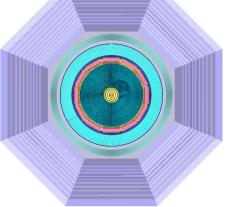
MDI

Detector Geometry Managment

- Developed the detector geometry management system (GMS)* *
 - The full detector can be easily build up with different sub-detector design options
 - Support single sub-detector simulation and the full detector simulation

STCF.xml **ECAL** Other VTD v03.xml sub-detectors v02.xml v02.xml v01.xmlv01.xml Materials.xml Elements.xml

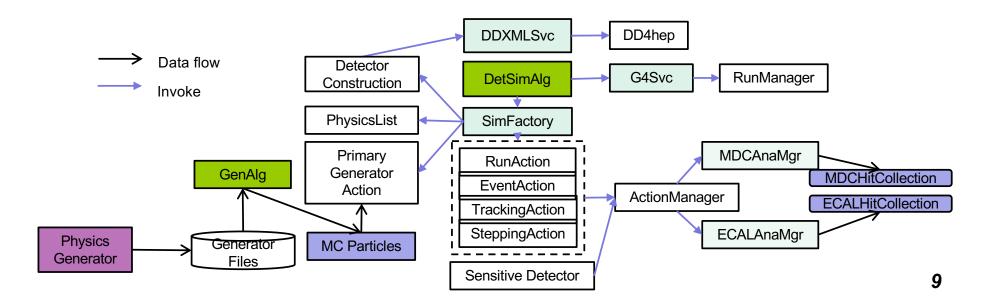
Structure of the geometry parameters repository

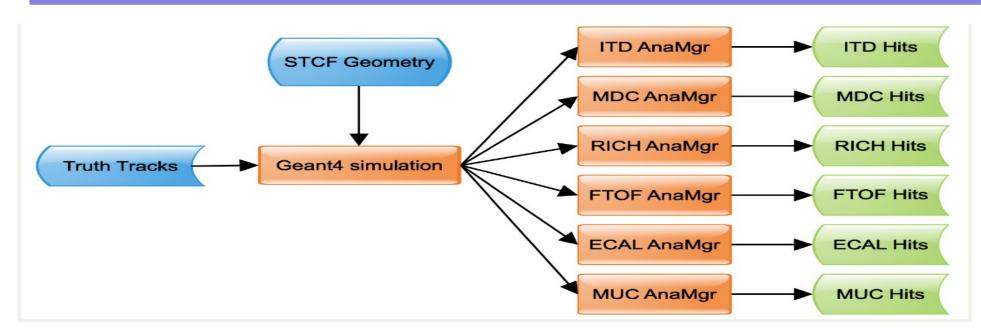

cross view in the r-z plane

cross view in the x-y plane

* "Detector geometry management system designed for Super Tau Charm Facility offline software", published on JINST 2021 JINST 16 T04004

More details in


next talk by He

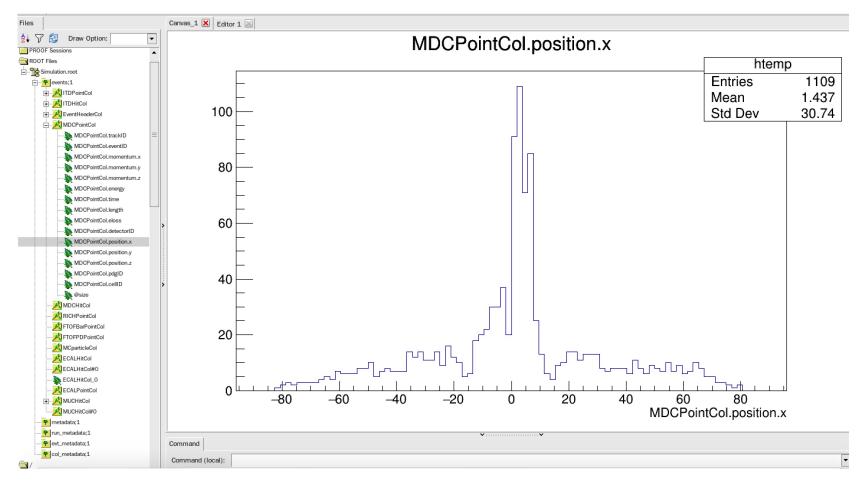

Detector Simulation

The whole detector simulation chain is completed

- Developed a unified generator interface to configure different physics generators
 - Babayaga, Phokhara, KKMC, EvtGen, DIAG 36, etc.
- developed a new service (DDXMLSvc)
 - Deliver detector geometry from DD4hep to both Geant4 and recon. algorithms
 - Provide the user interface to configure Sensitive Detector
- One analysis manager is mandatory for each sub-detector to retrieve Geant4 simulation information and save them into the PODIO objects

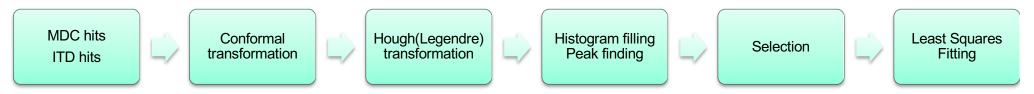
Single Sub-detector or Full Detector Simulation

Only record simulation information from ECAL

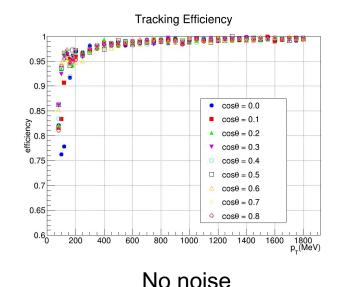

factory = task.createSvc("FullSimFactory/FullFacory")
factory.property("AnaMgrList").set(["GeneratorMgr","ECALAnaMgr"])

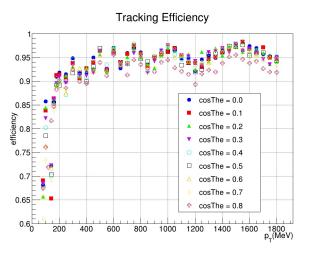
Record simulation information from Full detector

factory = task.createSvc("FullSimFactory/FullFacory") factory.property("AnaMgrList").set(["GeneratorMgr","ITDAnaMgr","MDCAnaMgr","FTOFA naMgr", "RICHAnaMgr") "ECALAnaMgr","MUCAnaMgr")


Finished Transition from ROOT EDM to PODIO

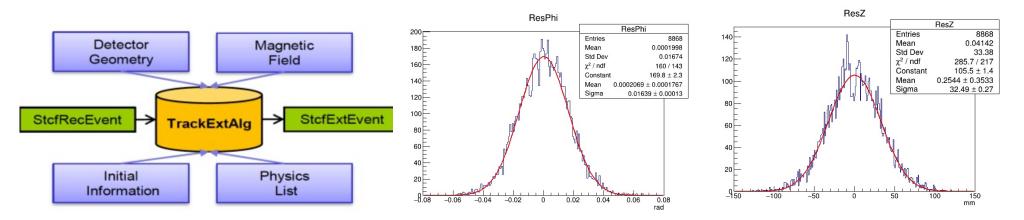
- All simulation algorithms have been updated
- New simulated results are consistent with old ones
- Found one bug of PODIO and asked developers to fix it




Tracker Reconstruction

Developed Track finding algorithm based on Hough transformation

- Track fitting algorithm is performed by the Deterministic Annealing Filter (DAF) method, an extension of Kalman Filter , in GENFIT2
- Performance study with/without noise



Approximately 800 MDC noise hits

Tracking efficiency for single π +

Track Extrapolation

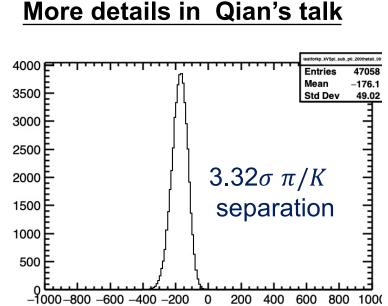
- A Geant4-based track extrapolation algorithm is imported from BESIII
 - Extrapolating the MDC fitting track into outer sub-detectors
 - Support 5 hypotheses: e, mu, pi, K , p
 - Has been used by other sub-detectors

Pt=1.0GeV mu-, Theta=90 extrapolation position vs truth position

Extrapolate to MUC

RICH Reconstruction

- A likelihood-based PID method is studied
 - The photon collected in each anode pad follows the Poisson distribution:


$$pdf_{i,h} = Poisson (N_i + 10^{-3}, avg_{i,h} + 10^{-3}),$$

• The Likelihood of h hypothesis:

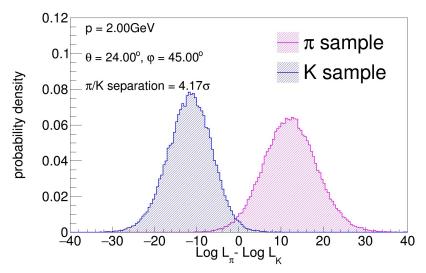
 $\ln \mathcal{L}_h = \sum_{i}^{npads} \ln p df_{i,h}$ (h: pi, K, P)

• The Difference in log-likelihood (DLL) between two hypothesis

$$DLL = \sum_{i}^{npads} \ln \frac{pdf_{i,\pi}}{pdf_{i,K}}$$

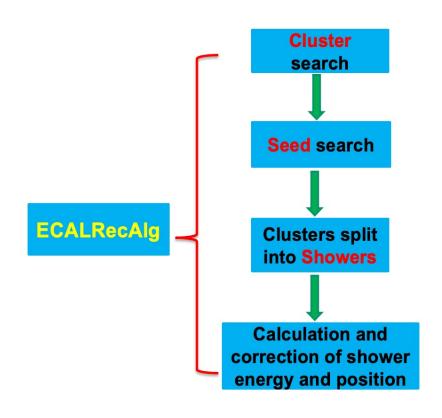
The implementation within OSCAR is on-going now

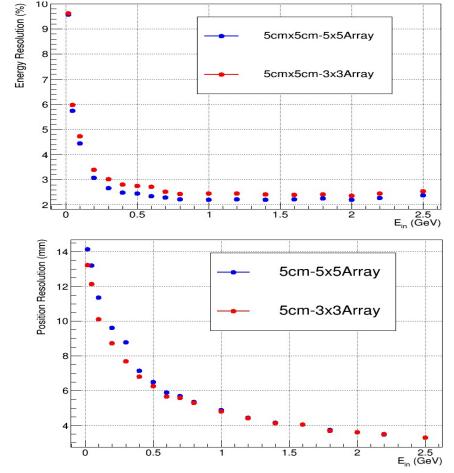
DTOF Reconstruction


A likelihood-based PID method is studied for DTOF

• use time information of the photo electrons.

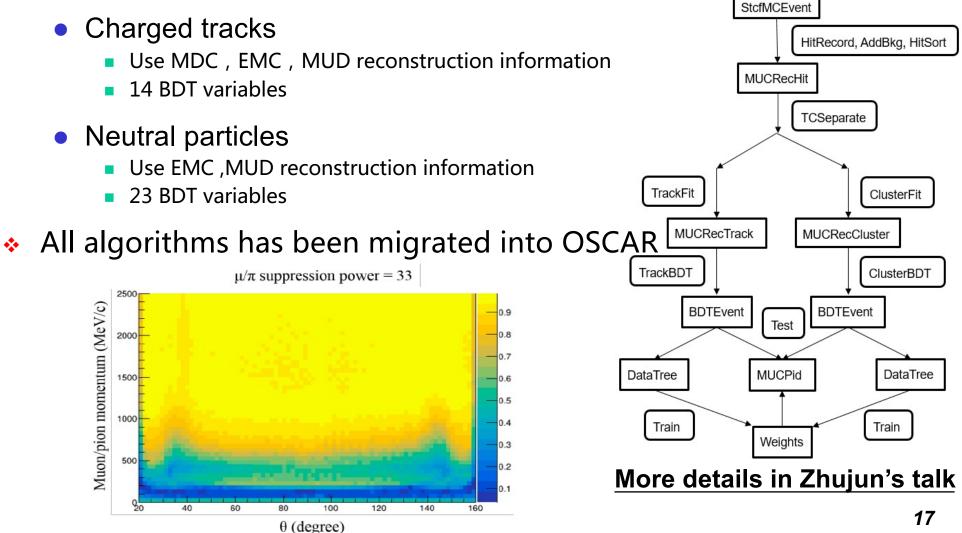
 $\mathcal{L}_{h} = p_{h}(N_{p.e.}) \prod_{i=0}^{N_{p.e.}} f_{h}(TOF_{i}) \qquad f_{h}(t) = \begin{cases} gaus + 0.05, \ signal \ and \ bkg \\ 0.05, \ bkg \end{cases}$ $\Delta \ell = Log \ \mathcal{L}_{\pi} - Log \mathcal{L}_{K} \qquad p_{h}(N_{p.e.}) = crystalball$


More details in Ming's talk

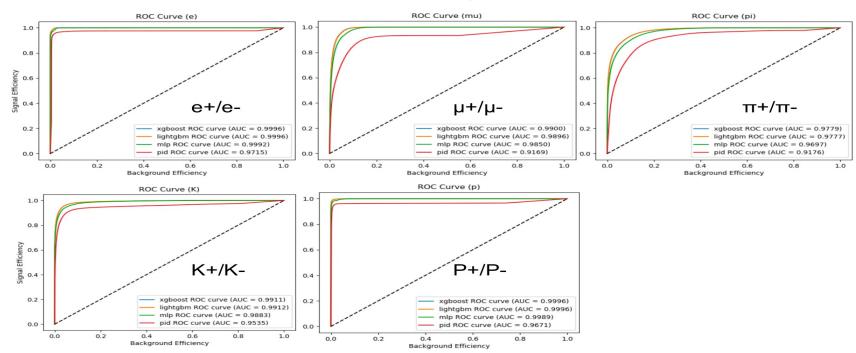

- separation power reaches 4.17σ
- The migration of the method to OSCAR is on-going now

ECAL Reconstruction

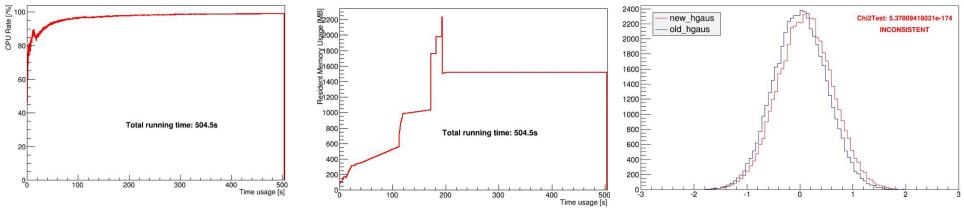
- The algorithms have been developed and well-tested
 - the energy of the shower
 - the position of the photo



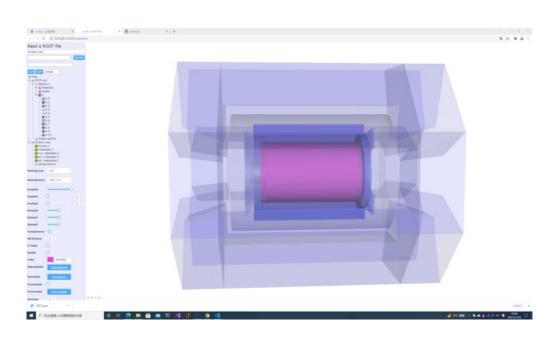
More details in Yunlong's talk

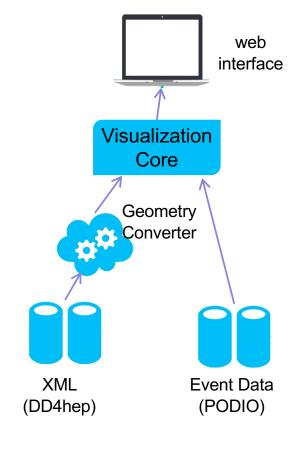

MUD Reconstruction

The reconstruction algorithms are developed based on BDT method


Global PID Algorithm Based on Deep Learning

- Combine information of multiple sub-detectors
 - MDC, TOF, RICH, EMC, MUC
- Study the performance of different Models with BESIII Data
 - GBDT, MLP, SVM, CNN, GRU, LSTM
 - GBDT currently outperforms better than other models
- Plan to use OSCAR MC Data to study PID performance


Automated Validation System


- An automated validation system is being developed for software validation at different levels
 - Unit test, integrated test, performance test, physical validation etc.
- A powerful toolkit is developed for building software validation workflow
 - Provide interfaces to define and run unit tests
 - Support various detectable failures (log errors, memory leaking, ...)
 - Support performance profiling
 - Support results validation based on statistical methods

Visulization Toolkit

- A common detector visualization and event display toolkit is being developed based on:
 - WebGL: high-performance interactive 3D and 2D visualization
 - ThreeJS: 3D mesh renderer
 - DD4hep: detector description
 - PODIO: event data model
- Initially developed for HERD, optimizing for STCF now

Software Release

- OSCAR_1.0.0
 (2020-06)
- Phokhara
- StcfEvtGen
- DIAG36
- MDI geometry
- Magnetic Field
- DataBuffer
- MemMonitor
- DetGeoConSvc
- Qt5
- Oscar command

- OSCAR_2.0.0
 (2021-01)
- RootIOSvc
- TClonesArray
- CommonSvc
- Accessing EDM in mutitask
- Shared ExternalLibs
- Detector Cell Id
- RICH Geometry update
- RecAlg
- RecEvent

- ✤ OSCAR_2.1.0 (2021-12)
- EDM with PODIO
- podio00-11
- root 6.20.04
- CMT->cmake
- Validation package
- DDXMLSvc

OSCAR_2.1.0 will be released soon after migration of EDM to PODIO and validation of reconstruction algorithms.

Summary and Future plan

Lots of Progress has been made since last workshop

- Redesign EDM with PODIO and developed new EDM system
- Optimized the full detector simulation chain
- Recon. algorithms for Tracker, ECAL and MUC are implemented with OSCAR
- PID/Global PID algorithms are under developing
- Developed prototype of the Validation and visualization tools
- Software Management updates: SVN->Gitlab, CMT->Cmake

Future plan for next year

- Update geometry information according to the latest detector designs
- Implement more realistic simulation of digitization process
- Finish migration of reconstruction algorithms
- Optimize reconstruction performance with backgrounds

Thanks for your attention!