Proposal for the prompt inclusive J/ψ production measurement at future Super c-tau factories

Olga BAKINA

Joint Institute for Nuclear Research, Dubna, Russia

Motivation

Goal:

- Test the NRQCD factorization hypothesis: the independence of Long Distance Matrix Elements (LDME) that describe the hadronization of the cc pair from the process (hadron-hadron collisions, electroproduction, or e⁺e⁻ annihilation)
- Clarify the contribution of the color octet_channel in the range of \sqrt{s} below the J/ ψ cc threshold (\sim 6 GeV): the color-octet LDMEs are non-zero if σ >10 pb at \sqrt{s} = 4.6 \sim 5.6 GeV (Eur. Phys. J. C (2017) 77: 597)

For a heavy quarkonium process, factorization was proved in inclusive decay and conjectured in production:

$$\sigma[ij \to H + X] = \sigma[ij \to Q\overline{Q}_n + X] \times \langle O^H_n \rangle$$

Nonperturbative NRQCD long distance matrix elements (LDMEs) $\langle O^H_n \rangle$ are determined from experimental data.

- Data only available at $\sqrt{s} = 10.6$ GeV:
 - ✓ 2.5 ± 0.3 pb (BaBar)
 - ✓ $1.5 \pm 0.2 \text{ pb}$ (Belle)
 - ✓ $1.9 \pm 0.2 \text{ pb}$ (CLEO)

Prompt inclusive J/ ψ production ($e^+e^- \rightarrow J/\psi_{prompt}X$)

- Prompt = Total $-\{\psi' \rightarrow J/\psi\} \{\chi_{c1,2} \rightarrow J/\psi\} \{e^+e^- \rightarrow \gamma_{ISR}J/\psi(\psi')\}$
 - J/ ψ produced in the decay of classical charmonia ψ' and $\chi_{c1,2}$ are excluded
 - J/ ψ produced via the ISR return to the J/ ψ and to the ψ ' resonances are excluded
 - Other classical charmonia like $\psi(3770)$, χ_{c0} , etc. are **ignored** as far as their possible contribution is **negligibly** small
 - J/ ψ produced in the decay of **exotic XYZ states** like Y(4260), Z_c(4200), etc. **are treated as a signal** in the present analysis
- The region of main interest is $\sqrt{s} > 4.5$ GeV (far from resonances)

Event reconstruction

- $^{\bullet}J/\psi \ \rightarrow \ \mu^{+}\mu^{-}$
- • $\psi' \rightarrow J/\psi \pi^+ \pi^- \rightarrow (\mu^+ \mu^-) \pi + \pi$
- $\bullet \chi_{c1,2} \rightarrow \gamma J/\psi \rightarrow \gamma (\mu^+ \mu^-)$

Detector requirements:

- " Reconstruction of charged tracks & photons
- ✓ Identification of muons & pions
- \sim Acceptance is close to 4π

Expected measurement accuracy

- Statistical error @4.65 GeV, 100 fb⁻¹: ~4%
- Main sources of systematic error:
 - Reconstruction of charged tracks & photons
 - → Uncertainty of values $Br(\psi' \rightarrow J/\psi X)$ and $Br(\psi' \rightarrow J/\psi \pi^+\pi^-)$

Thank you for your attention!