

The charged lepton flavor violating process $\tau \rightarrow \gamma \mu$ at STCF

Teng Xiang¹, Xiaodong Shi², Dayong Wang¹, Xiaorong Zhou² ¹Peking University, ²University of Science and Technology of China Workshop on future Super c-tau factories 2021

Introduction

cLFV forbidden in SM \Rightarrow unambiguous signature of NP

- Theoretically \triangleright Predicted in a wide variety of NP scenarios With rates close to current experimental limits
- > Experimentally Belle: $\mathcal{B} < 4.2 \times 10^{-8}$ Babar: $B < 4.4 \times 10^{-8}$
- \succ τ cLFV Heaviest lepton, many cLFV decay modes $\tau \rightarrow \gamma \mu$ as golden channel

Advantages at STCF Analysis

 \blacktriangleright Pair production \Rightarrow tag

tau-charm region

low multiplicity, full

Better separation of

4.199 4.250

 $e^+e^- \rightarrow \tau^+\tau^-$

signal photon and

radiative photon

2.5

eff. and low bkg.

and probe

- Tag side: $ev_{\tau}v_{e}, \pi v_{\tau}, \pi \pi^{0}v_{\tau}$ Sig side: $\gamma \mu$
- Max $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ in Global Punzi FOM optimization

Detector response optimization

 γ pos. reso.: as good as possible

 γ ene. reso.: as good as possible

Summary

With the expected performance of detector and the luminosity of $1ab^{-1}$ in one year, the sensitivity is estimated to be 1.6×10^{-8} Bkg. clean \Rightarrow with ten-year of data taking, the sensitivity is estimated to be 1.6×10^{-9} 25 times improved upon the current best result