

Prospects of CKM elements $|V_{cs}|$ and decay constant $f_{D_s^+}$ in $D_s^+ \rightarrow l^+ \nu_l$ decay at STCF Jiajun Liu¹ Huijing Li² ¹helloliujiajun@163.com, University of South China

²lihuijing@ihep.ac.cn, Henan Normal University

Introduction

In the SM

• D_s pure leptonic decay:

Analysis of $D_s^+ \rightarrow l^+ \nu_l$

 $e^+e^- \to D_s^+D_s^- 0.1 \text{ ab}^{-1} @4.009 \text{GeV}$

$$\Gamma(D_s^+ \to l^+ \nu_l) \propto \left| f_{D_s^+} \right|^2 \cdot |V_{cs}|^2$$

- □ Precise measurements of $f_{D_s^+}$ and $|V_{cs}|$ are essential to probe new physics beyond the Standard Model (SM).
- □ Up-to-date results of $|V_{cs}|$ and $f_{D_s^+}$ are still limited by statistics uncertainty in the measurement of $D_s^+ \rightarrow l^+ \nu_l$.
- □ Future precise measurement of $D_s^+ \rightarrow l^+ v_l$ is critical to calibrate various theoretical calculations of $f_{D_s^+}$ and test the unitarity of the CKM matrix.

• Analysis method is double tag method.

14 single tags are reconstructed, whose total Branch fraction is $(30.57 \pm 1.05) \times 10^{-2}$.

- The branch fraction is $(5.61 \pm 0.05) \times 10^{-3}$ by $D_s^+ \to \mu^+ \nu_{\mu}$. The branch fraction is $(5.49 \pm 0.06) \times 10^{-2}$ by $D_s^+ \to \tau^+ \nu_{\tau}$.
- Statistical sensitivity of BF is 2.7 times better than BESIII.

Results of $D_s^+ \rightarrow l^+ \nu_l$

Combined results from these BESIII measurements and PDG values

- > Optimized response of tracking efficiency for low momentum charged pion is 72.19% at $p_T = 0.1 \text{GeV}/c$.
- > Detection efficiency of photons is 97.32% at 0.2 GeV.

ETM(2+1+1) FMILC(2+1+1 FLAG19(2+1+	PRD91(2015)054507) PRD98(2018)074512 1) arXiv:1902.08191 [hep-lat]	247.2±4.1 ► 249.9±0.4 249.9±0.5	
HFLAV18	EPJC81(2021)226	254.5±3.2	
CLEO	PRD79(2009)052002, t _e ∨	251.8±11.2±5.3	-#
CLEO	PRD80(2009)112004, $\tau_{p}V$	257.0±13.3±5.0	-
CLEO	PRD79(2009)052001, $t_{\pi}V$ PRD82(2010)091103 $\tau_{\pi}V$	277.1±17.5±4.0	
Babar Ballo	IHEP09(2013)139. T V	244.0 ±8.0 ±12.0	
BESHI 0 482 f	-1 PRD94(2016)072004. μV	245.5+17.8+5.1	-
CLEO	PRD79(2009)052001, µv	256.7±10.2±4.0	<u> </u>
BaBar	PRD82(2010)091103, µV	264.9±8.4±7.6	• •
Belle	JHEP09(2013)139, μν	248.8±6.6±4.8	
BESIII 3.19 fb	I PRL122(2019)071802, μν	253.0±3.7±3.6	E .
BESIII 6.32 fb	arXiv:2102.11734 [hep-ex], μν	249.8±3.0±3.8	
BESIII 6.32 fb	arXiv:2102.11734 [hep-ex], τ_{π}	249.7±6.0±4.2 H ●	
BESIII 6.32 fb	arXiv:2105.07176 [nep-ex], 1,	251.6±5.9±4.9	
STCF 0.1 ab	arXiv:2100.00004v1 [hep-ex],	VeV 200.0 ±0.0	
SICF 0.1 ab	ar Arv. 2107.14707 [hep-ex], p	400.0 - 9.4	. P
I I E			i i s
0	100	200	300
0	100 f _{Ds} * [Me'	200 V]	300
CKMFitter	100 f _{D⁺_s} [Me ⁺	200 V]	300
CKMFitter ETM(2+1+1)	100 f _{D⁺} [Me ¹ PJC41(2005)1 PRD91(2015)054507	200 V] 0.973394±0.000096	300 300
O CKMFitter ETM(2+1+1) FMILC(2+1+1)	100 f _D ⁺ [Me ¹ PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003	30C
CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1)	100 f _D ⁺ [Me ¹ PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat]	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016	30C
CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18	100 f _{D_s} [Me ^v PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat] EPJC81(2021)226	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01	300
0 CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c	100 f _{D_s} [Me [×] PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat] EPJC81(2021)226 PRD79(2009)052002, τ _e V	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022	300
0 CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c	100 f _D ⁺ [Me ^N PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat] EPJC81(2021)226 PRD79(2009)052002, τ _e V PRD80(2009)112004, τ _ρ V	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022	300
0 CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c CLEO-c	100 f _D ⁺ [Me ^N PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat] EPJC81(2021)226 PRD79(2009)052002, τ _e ν PRD80(2009)112004, τ _ρ ν PRD79(2009)052001, τ _π ν	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 1.009±0.052±0.021	300
0 CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c CLEO-c BaBar	$\begin{array}{c} 100\\ f_{D_s^+} \text{[Me']}\\ \end{array}$	200 V] 0.973394±0.000096 1.014±0.024 1.004±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 1.009±0.052±0.021 1.088±0.069±0.018 0.956±0.036±0.056	
0 CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c BaBar Belle	$\begin{array}{c} 100\\ f_{D_s^+} \text{[Me']}\\ \end{array}$	200 V] 0.973394±0.000096 1.014±0.024 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 1.009±0.052±0.021 1.088±0.069±0.018 0.956±0.036±0.056	
CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c BaBar Belle BESIII 0.482 fb ⁻¹	100 $f_{D_s^+}$ [Me ^N PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat] EPJC81(2021)226 PRD79(2009)052002, τ _e V PRD80(2009)112004, τ _p V PRD80(2009)112004, τ _p V PRD79(2009)052001, τ _π V PRD79(2009)052001, τ _π V PRD82(2010)091103, τ _{e,µ,π} V JHEP09(2013)139, τ _{e,µ,π} V PRD94(2016)072004, µV	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 H 1.009±0.052±0.021 H 1.088±0.069±0.018 0.956±0.036±0.056 H 1.025±0.019±0.029 0.944±0.063±0.027 H	
CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c BaBar Belle BESIII 0.482 fb ⁻¹ CLEO-c	100 $f_{D_s^+}$ [Me [×]] PJC41(2005)1 PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat] EPJC81(2021)226 PRD79(2009)052002, τ _e V PRD80(2009)112004, τ _ρ V PRD80(2009)112004, τ _ρ V PRD79(2009)052001, τ _π V PRD82(2010)091103, τ _{e,µ,π} V JHEP09(2013)139, τ _{e,µ,π} V PRD94(2016)072004, µV PRD79(2009)052001, µV	200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 1.009±0.052±0.021 1.088±0.069±0.018 0.956±0.036±0.026 H 1.025±0.019±0.029 0.944±0.063±0.027 1.007±0.040±0.018	
CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c BaBar Belle BESIII 0.482 fb ⁻¹ CLEO-c BaBar		200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 1.009±0.052±0.021 1.088±0.069±0.018 0.956±0.036±0.026 1.025±0.019±0.029 0.944±0.063±0.027 1.007±0.040±0.018 1.040±0.033±0.031	
CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c BaBar Belle BESIII 0.482 fb ⁻¹ CLEO-c BaBar Belle BESIII 0.482 fb ⁻¹		200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 1.009±0.052±0.021 1.088±0.069±0.018 0.956±0.036±0.026 1.025±0.019±0.029 0.944±0.063±0.027 1.007±0.040±0.018 1.040±0.033±0.031 0.976±0.026±0.021	
CKMFitter ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1) FLAG19(2+1+1) HFLAV18 CLEO-c CLEO-c CLEO-c BaBar Belle BESIII 0.482 fb ⁻¹ CLEO-c BaBar Belle BESIII 0.482 fb ⁻¹		200 V] 0.973394±0.000096 1.014±0.024 1.000±0.016±0.003 1.004±0.002±0.016 0.969±0.01 0.988±0.044±0.022 1.009±0.052±0.021 1.088±0.069±0.018 0.956±0.036±0.056 1.025±0.019±0.029 0.944±0.063±0.027 1.007±0.040±0.018 1.040±0.033±0.031 0.976±0.026±0.021 0.985±0.014±0.014	

- $> \pi/k$ mis-identification rate of 1% with the PID performance.
- > π/μ mis-identification rate of 3% with the MUD performance.
- > Detection efficiency for ST is increased by a factor of 1.1 to 1.2.
- > Efficiency for selecting $D_s^+ \rightarrow \mu^+ \nu_{\mu}$ is increased by a factor of 1.3.

BESIII 6.32 fb STCF 1.0 ab⁻¹ STCF 0.1 ab⁻¹ -0.5 -1.5 - 1 0.5 0 1.5 -2 $|V_{cs}|$ $f_{D_s^+} = 255.8 \pm 0.4 \text{ MeV}$ $\tau^+ \nu_{\tau}$ $f_{D_s^+} = 256.3 \pm 0.5 \text{ MeV}$ $\mu^+ \nu_{\mu}$ $|V_{cs}| = 0.998 \pm 0.003$ $|V_{cs}| = 0.996 \pm 0.002$ $R_{\tau/\mu} = \frac{\overline{\Gamma} (D_s^+ \to \tau^+ \nu_{\tau})}{\overline{\Gamma} (D_s^+ \to \mu^+ \nu_{\mu})} = 9.79 \pm 0.05$

Summary

- Unprecedented precision to be achieved at STCF will provide a precise calibration of QCD and a rigorous test of SM.
- Accuracy of LFU test can be improved obviously experimentally, which makes it promise to search for the new physics beyond SM.