Use of Artificial Neural Network for Event Reconstruction in FARICH detector

Sergey Kononov

Budker Institute of Nuclear Physics, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia

Workshop on future Super c-tau factories 2021

November 16, 2021

Event reconstruction using Neural Networks

Motivation

- Alternating approach to event reconstruction with a potential to include all observed data without knowing PDFs → flexibility
- More straightforward and attractive for developer

Implementation

- Python with Pandas, TensorFlow, etc. packages
- Geometrical reconstruction of hit θ_c , ϕ_c , then NN training
- Obtain particle's β from a single NN output

hidden layer 1 hidden layer 2 hidden layer n

neural network

SCTF FARICH simulated configuration

Photon detector

- ON Semiconductor (SensL) ArrayJ-30020-64P-PCB
- Pixel size 3.16×3.16 mm²
- Pixel pitch 3.36 mm
- $U_{bias} = 2.5V$
- $\lambda_{\text{max}} \approx 400 \text{ nm}$, PDE_{max} $\approx 38\%$
- Sensor geom. fill factor ≈ 88%

Radiator

- 4-layer focusing aerogel
- $n_{max} = 1.05$
- 35 mm thickness

PD-Radiator distance: 200 mm

Event reconstruction using

geometric approach

Accumulated hit map P = 2.4 GeV/c, $\theta_p = 45^\circ$

 θ_c , ϕ_c – photon angles in the nominal point of origin w.r.t. particle direction

Results of NN event reconstruction

 $\geq 5.10^{-4} \, \beta$ resolution for 1 Mcps/mm² dark count rate

Comparison of reconstruction approaches

- Geometrical reconstruction with a fit to θ_c (ϕ_c) dependence gives $\sigma_\beta \approx 4 \cdot 10^{-4}$ ($\theta_p = 0^\circ$, no DCR)
- Evaluation from SPE radius resolution gives $\sigma_{\beta} \approx 3.10^{-4}$

NN performance

Different binning of hits

Gaussian velocity resolution, DCR=1Mcps/mm², θ_p < 10⁰ \rightarrow 3d bins: ϕ_c - 5, θ_c - 15, time - 5 3d bins: ϕ_c - 5, θ_c - 20, time - 1 - 3d bins: ϕ_c - 5, θ_c - 20, time - 2 0.0025 \rightarrow 3d bins: ϕ_c - 3, θ_c - 20, time - 5 \rightarrow 3d bins: ϕ_c - 5, θ_c - 20, time - 5 - 3d bins: ϕ_c - 10, θ_c - 20, time - 5 (trained on 300k events) 0.0020 3d bins: ϕ_c - 5, θ_c - 30, time - 1 3d bins: ϕ_c - 10, θ_c - 30, time - 1 3d bins: ϕ_c - 5, θ_c - 30, time - 5 (trained on 500k events) 0.0015 0.0010 0.0005 0.0000 0.960 0.975

Dependance on DCR

