

Charm Baryons at SCT Factory

Timofey Uglov LPI RAS, HSE

Talk at Workshop on future Super c-tau factories

Novosibirsk

November 16, 2021

SCTF energy and luminosity

A one-year dataset at $\mathcal{L} = 10^{35} \, \mathrm{cm}^{-2} s^{-1}$

2 <i>E</i> , GeV	Events recorded	
3.1	$10^{12}J/\psi$	
3.69	$10^{11} \psi(2S)$	
3.77	$10^9D\overline{D}$	
4.17	$10^8D_s\overline{D}_s$	
$3.55 \div 4.3$	$10^{10} au au$	
4.65	$10^8\Lambda_c^+\Lambda_c^-$	

> 4.65 ???

Charm baryon threshold

Production cross-section in e⁺e⁻ annihilation

 $\sigma(e^+e^-\to\Lambda_c\overline{\Lambda}_c)\sim 0.5\,{\rm nb}\, @\,4.65\,{\rm GeV} \qquad \mbox{(possible resonant enhancement)}$ <10 pb without resonances (predicted)

Form-factor measurement

Check and justify effective theories (like HQET) and lattice calculations (LQCD)

$$\Lambda_c^+ \to \Lambda l^+ \nu_l \ (l = e, \mu)$$

In HQET charm and beauty baryons' form-factors are connected

measurement of the Λ_c^+ semileptonic form-factor gives input to $|V_{cb}|$ and $|V_{us}|$ measurements with Λ_b^0 decays

Form-factor measurement

For arbitrary semileptonic baryon decay: $B_1(p_1,M_1) \rightarrow B_2(p_2,M_2) + l(p_l,m_l) + \nu_l(p_{\nu_l},m_{\nu_l}=0)$

$$\langle B_2 | j_\mu^V | B_1 \rangle = M_\mu^V = \overline{u}_2 \left[F_1^V(q^2) \gamma_\mu + \frac{F_2^V(q^2)}{M_1} \sigma_{\mu\nu} q^\nu + \frac{F_3^V(q^2)}{M_1} q_\mu \right] u_1,$$

$$\langle B_2 | j_\mu^A | B_1 \rangle = M_\mu^A = \overline{u}_2 \left[F_1^A(q^2) \gamma_\mu + \frac{F_2^A(q^2)}{M_1} \sigma_{\mu\nu} q^\nu + \frac{F_3^A(q^2)}{M_1} q_\mu \right] \gamma_5 u_1,$$

Assuming that:

- Lepton mass is small
- There are no T-odd effects
- HQET works for $c \to s l^+ \nu_l$ transition only two parameters survives: $\mathsf{M}_{\mathsf{pole}}$ and $R(q^2) = f_2(q^2)/f_1(q^2)$

$$\begin{split} \langle \Lambda | \, J_{\mu} \, | \Lambda_c^+ \rangle &= \overline{u}_{\Lambda} \bigg[f_1(q^2) \gamma_{\mu} (1 - \gamma_5) + f_2(q^2) \hat{v}_{\Lambda_c} \gamma_{\mu} (1 - \gamma_5) \bigg] u_{\Lambda_c}; \\ F_1^V(q^2) &= -F_1^A(q^2) = f_1(q^2) + \frac{M_{\Lambda}}{M_{\Lambda_c}} f_2(q^2); \\ F_2^V(q^2) &= -F_2^A(q^2) = f_2(q^2). \end{split} \qquad \qquad \begin{aligned} \text{CLEO:} \\ \text{PRL 94 191801} \\ M_{pole} &= [2.21 \pm 0.08 \pm 0.14] \text{GeV} \end{aligned}$$

$$R = -0.35 \pm 0.05 \pm 0.04$$

Charmed baryon spectroscopy

$$3\times 3=\overline{3}_A\oplus 6_S$$

$$\downarrow\uparrow\uparrow\downarrow\uparrow$$

$$q=u,d,s \qquad (q\ q)\ c \qquad (q\ q)\ c$$
 Spin 1/2:
$$\Lambda_c^+,\Xi_c^+,\Xi_c^0 \qquad \Sigma_c^{++,+,0},\Xi_c^{\prime+},\Xi_c^{\prime0},\Omega_c^0$$

Spin 3/2: $\Sigma_c^{*++,+,0}, \Xi_c^{*+}, \Xi_c^{*0}, \Omega_c^{*0}$

P-wave excitations: 63 states

Charmed baryon spectroscopy

Charmed baryons excitations and decays

Charmed baryons' properties

Dominant

		$J^{\mathcal{P}}$	Mass	Width	decay channel
Λ_c^+	udc	$(1/2)^+$	2286.46 ± 0.14	$(200 \pm 6) \text{ fs}$	Weak
Ξ_c^+	usc	$(1/2)^+$	$2467.8^{+0.4}_{-0.6}$	$(442 \pm 26) \text{fs}$	Weak
Ξ_c^0	dsc	$(1/2)^+$	$2470.88^{+0.34}_{-0.8}$	112_{-10}^{+13} fs	Weak
Σ_c^{++}	uuc	$(1/2)^+$	2454.02 ± 0.18	$2.23 \pm 0.30 \text{MeV}$	$\Lambda_c^+\pi^+$
Σ_c^+	udc	$(1/2)^+$	2452.9 ± 0.4	< 4.6 MeV	$\Lambda_c^+\pi^0$
Σ_c^0	ddc	$(1/2)^+$	2453.76 ± 0.18	$2.2 \pm 0.4 { m MeV}$	$\Lambda_c^+\pi^-$
$\Xi_c^{\prime+}$	usc	$(1/2)^+$	2575.6 ± 3.1	_	$\Xi_c^+ \gamma$
$\Xi_c^{\prime 0}$	dsc	$(1/2)^+$	2577.9 ± 2.9	_	$\Xi_c^0 \gamma$
Ω_c^0	ssc	$(1/2)^+$	2695.2 ± 1.7	$(69 \pm 12) \text{ fs}$	Weak
Σ_c^{*++}	uuc	$(3/2)^+$	2518.4 ± 0.6	$14.9 \pm 1.9 \text{MeV}$	$\Lambda_c^+\pi^+$
Σ_c^{*+}	udc	$(3/2)^+$	2517.5 ± 2.3	< 17 MeV	$\Lambda_c^+\pi^0$
Σ_c^{*0}	ddc	$(3/2)^+$	2518.0 ± 0.5	$16.1 \pm 2.1 \; \text{MeV}$	$\Lambda_c^+\pi^-$
Ξ_c^{*+}	usc	$(3/2)^+$	$2645.9_{-0.6}^{+0.5}$	< 3.1 MeV	$\Xi_c\pi$
Ξ_c^{*0}	dsc	$(3/2)^+$	2645.9 ± 0.5	< 5.5 MeV	$\Xi_c\pi$
Ω_c^{*0}	ssc	$(3/2)^+$	2765.9 ± 2.0	_	$\Omega_c^0 \gamma$

Properties studied by

B-factories ($\sim 10^7 \, \Lambda_c^+$) and BES III

Absolute branchins are normalized to Br($\Lambda_c^+ \to p K^- \pi^+$)= 6.28±0.32 %

Summary

SCTF is an ideal laboratory for charm baryon study

108 $\Lambda_c \overline{\Lambda}_c$ pairs per year is one of the world larges (and cleanest) dataset

Near the threshold no momentum tag is needed

With polarized beams Λ_c^+ is produced with known polarization \to no tag needed