

SiW ECAL for future e⁺e⁻ collider

Vladislav Balagura (LLR – Ecole polytechnique / CNRS / IN2P3), 1 Mar 2017

on behalf of SiW ECAL ILD / CALICE collaboration

Outline:

- (1) High granularity silicon calorimeters
- (2) R&D and optimization of ILD detector
- (3) SiW ECAL technological prototype and SPS beam test results

Conclusions

Supported by:

1

Silicon calorimeters

- easily segmentable,
- stable linear response (7000 e-holes /100 um/MIP), easy calibration,
- independent to environmental changes, stable in time
- radiation hard
- excellent timing ($\sigma_t \sim 20-50$ psec)

Ideal for PFA: lowest systematics, best granularity, but:

- high cost, ~ 2.5 EUR / cm² for mass production (offer from Hamamatsu in 2014)
- moderate sampling ECAL intrinsic resolution, though $\sigma_{E} \leq 20\% \cdot \sqrt{E}$ is sufficient for PFA
- low-noise electronics required

Detectors: (1) ECAL in future e⁺e⁻ high-energy colider: **ILD, SiD, CEPC, FCC, CLIC**

- (2) Approved for CMS HGCAL phase II project: radiation hard 40 silicon layers in endcaps, 20 psec timing to reduce ≤ 200 pile-up
- (3) Proposed for **ATLAS High Granularity Timing Detector (HGTD = preshower):** 4 Si layers with low gain, fast to reduce pile-up
- (4) Proposed for **LHCb phase II ECAL upgrade,** eg. 3 silicon layers, high granularity to measure angle btw pi0 photons, fast to reduce pile-up

BH

International Large Detector (ILD)

ECAL options: 2012 ILD TDR baseline with 30 layers, 22 layers, 23% smaller radius

Separation of two close showers in ILD

... determines PFA confusion for P(jet)>100 GeV.

π-π

JINST 6, P07005 (2011)

 $\tau^{\pm} \rightarrow ~N\gamma$

Eur. Phys. J. C (2016) 76: 468.

Recent results on $\gamma - \gamma(\pi)$ separation efficiency VS distance in ILD for PFA Garlic (only ECAL), Pandora and Arbor (both for jets). Both $\gamma(\pi)$ should be reconstructed with E, position within ±20%, ±5 mm.

Garlic and Pandora: 2.5x2.5 mm² pixel is worse than default 5x5 mm² (!), artefact of optimization. ⁴ Comparison with CALICE physical prototype data will be available soon (note under review).

CALICE / ILD SiW ECAL

SiW ECAL "physical" prototype (2005 – 2011), 18x18x20 cm³

 $\sigma(E)/E = (16.6 \pm 0.1)\% / \sqrt{E} \odot (1.1 \pm 0.1)\%$ (MC: 17.3 / $\sqrt{E} \odot 0.5\%$) linearity within 1%

but not embedded electronics, big power consumption

NIM A608 (2009) 372

Carbon fiber – tungsten mechanical structure manufactured: 3/5 ILD module (5 years of R&D), max deviation from planarity 0.65 mm.

2d generation technological ECAL with embedded electronics (2011 – now):
(1) 18x18 cm² layer: ILD design channel density, 1024 pixels, 16 SKIROC chips, 4 sensors glued to PCB with 20 um precision; 10 layers produced
(2) Power pulsed: readout switched OFF between "ILC trains" (~100 less power)
(3) DAQ R&D ongoing, last beam test suffered from high noises, not finalized
(4) Optimization of Si sensors, laser tests
(5) Irradiation tests (50 ILC years Ok for Si)

Test beam with 3 layers (SPS, Nov'15)

Typical beam spot

(1) In 3072 channels: 2.2% masked. All layers power pulsed. Bunch crossing (BX) = 400 nsec.

> (3) Excellent MIP / Noise = 18 for optimal SKIROC settings (twice less for ILC)

Test beam with 3 layers (SPS Nov'15)

Problems:

(1) noise due to re-triggers = 1 usec "macro" event when almost every channel triggers once,

(2) synchronization: signals in 2 layers may differ by one BX,

(3) in shower, under high load chip trigger is delayed by one BX.

Conclusions

- (1) Silicon sensors for highly granular calorimetry, though expensive, are baseline option for many proposed detectors:
 - ECAL for ILD, SiD, CEPC, FCC, CLIC,
 - CMS HGCAL phase-2 upgrade of ECAL+HCAL endcaps for HL LHC (approved),
 - ATLAS HGTD fast preshower,
 - A few layers of LHCb ECAL in phase-II upgrade.

Silicon sensors expand from trackers to calorimeters (if budget allows)

- (2) Analysis of PFA "confusion" in ILD:
 - $\pi \pi$ separation
 - separation of tau-decay photons Eur. Phys. J. C (2016) 76: 468.

JINST 6, P07005 (2011)

- recent results: $\gamma \gamma$ and $\gamma \pi$ separation efficiency drops below ~3 cm distance, comparison with physical prototype data should appear soon as a CALICE note
- (3) After successful "physical" prototype, CALICE / ILD SiW ECAL group develops 2nd generation "technological" prototype:
 - ILD design channel density is reached
 - power pulsing successfully tested
 - excellent MIP/Noise = 18, spread btw. pixel responses to MIPs *before calibration* = 6.4%
 - efficiency = 98-99%
 - still, much more work ahead.

Backup slides

Particle Flow Algorithms (PFA)

E(jet) measurement:

- charged tracks (65%) in tracker,
- photons (25%) in ECAL,
- neutral h (10%) in HCAL

 $\sigma(E)/E = 3-4\%$ for 35-500 GeV jets (~50% of traditional calo) eg. $\sigma(M_{w,z}) \sim \Gamma_{w,z}$, sufficient to distinguish W,Z statistically

S.Green plot cited by D.Jeans at https://agenda.linearcollider.org/event/7014/contributions/ 34651/attachments/30224/45180/ild-caloOpt-talk.pdf