

NATIONAL RESEARCH CENTER "KURCHATOV INSTITUTE" Institute of Chemical Reagents and High Purity Chemical Substances, "IREA"

Polycrystalline Scintillators for Large Area Detectors in HEP Experiments

<u>G. Dosovitskiy¹</u>, A. Fedorov², P. Karpyuk¹, D. Kuznetsova¹, A.Mikhlin¹, D.Kozlov², A. Dosovitskiy³, M. Korjik²

 ¹ Institute of Chemical Reagents and High Purity Chemical Substances IREA NRC "Kurchatov Institute", Moscow, Russia
 ² Research Institute for Nuclear Problems, Minsk, Belarus
 ³ NeoChem JSC, Moscow, Russia

Work is supported by Russian Ministry of Science and Education, Subsidy agreement № 14.625.21.0033 dated 27.10.2015, project identifier RFMEFI62515X0033

INSTR 2017 Novosibirsk 01 March

Motivation:

Use of plastic scintillators in electromagnetic and hadronic calorimeters at experiments at hadron colliders with high luminosity becomes problematic.

Requirements for scintillation materials

for large area detectors:

- Radiation hard
- Sufficient signal
- Not too expensive

Candidates:

Composite materials Ceramic materials Induced absorption in the well known EJ260 green plastic scintillator under ⁶⁰Co irradiation (Υ 1.17 MeV + Υ 1.33 MeV)

Rather high, but recovers with time

Induced absorption, 1 month after irradiation with protons

EJ-200 plastic scintillator irradiation with fast neutrons

Alternative solution –

Single crystalline middle heavy scintillators on a base of Ce doped materials

Advantages :

Radiation hard and bright

More details:

– Were in previous report by Dr. Mikhail Korjik

– See P.Lecoq, M.Korzhik, A.Gektin, Inorganic Scintillators for Detecting Systems, 2017, Springer, P.408

Concerns:

Not optimal price performance for a large area detectors, 10 times more expensive than plastic, but comparable with 200 μ m thick silicon wafers

YAG:Ce was discovered to be the most radiation hard material of this kind No visible change of transmission

Kinetics of YAG:Ce could be adjusted keeping sufficient LY

Counts

Composite of glued grains of YAG:Ce

Key points – Proper choice of the dimensions of the grains; Proper packing and gluing of particles.

Improve composite?

Glue is organic compound, consisting of C and H. So, it is damaged under irradiation

1. Make cheaper

Replace grinded single crystal with synthesized powders

2. Improve radiation hardness Remove organic binder

Polycrystalline powders scatter light strongly

Ceramics formation – cost depends on choice of techniques

Powder preparation

Precipitation, Commercial powders, Sol-gel, Spray pyrolysis

Compacting

Pressing, Isostatic pressing, Slip casting, Tape casting

Sintering

Vacuum sintering, Hot pressing, Spark plasma sintering

Small size powders (~100 nm)

Dense packing (≥ 50% of $\rho_{teor.}$)

Sintering (up to 99,99% of $\rho_{teor.}$)

YAG:Ce translucent ceramics

Nanopowder by coprecopitation

Compacting and air sintering

2 μm

Under UV 365 nm

ρ~98%

Excitation and luminescence spectra of YAG:Ce ceramics at room temperature

Scintillation kinetics of YAG:Ce ceramics (room T) Quenching is achieved by Ce concentration

5,5 MeV alpha-particle amplitude spectra of 2 mm thick YAG:Ce ceramics compared to GS20 scintillation glass (surface excitation, strong light loss due to scattering)

Z

662 keV gamma-quanta amplitude spectra of 2 mm thick YAG:Ce ceramics compared to 2 mm thick BGO

Scintillation measurements for highly light scattering samples – signal collection from samples surface

Room to improve

Potential of scale-up to a production technology

Conclusions and outlook

YAG:Ce crystals have suitable properties for strongly irradiated detectors, but are too expensive

YAG:Ce ceramics is a fully inorganic crystalline material, and it can be made cheaper, compared to single crystals

Even weakly translucent samples demonstrate promising scintillation characteristics

Performance could be further improved

Thank you for your attention!!!

Acknowledgements:

Dr. Vladimir N. Schlegel (Institute of Inorganic Chemistry, Novosibirsk)
– for reference BGO crystal
Dr. Etiennette Auffray, Dr. Marco Lucchini (CERN),

Dr. Valeriy Dormenev (KVI, Groningen) – for data on irradiated plastic scintillators

Work is supported by Russian Ministry of Science and Education, subsidy agreement № 14.625.21.0033 dated 27.10.2015, project identifier RFMEFI62515X0033

Contacts:Georgy Dosovitskiy+7-916-117-32-20george.dos@gmail.com