

Status of the KLOE-2 experiment

INSTR17 - Instrumentation for Colliding Beam Physics

Danilo Domenici - LNF on behalf of the KLOE-2 collaboration DAONE at INFN-Frascati National Laboratories the Italian collider for particle physics

bt

main

rings

kloe-2

dump

FINO

electrons positrons both

linac

1 GeV Physics History at Frascati

KLOE experiment has already taken data in 2001-2006:

- 2.5 fb⁻¹ at 1.02 GeV
- 250 pb⁻¹ at 1.00 GeV

DAFNE upgraded in 2008 with Crab-waist interaction scheme:

- Large Piwinski angle
- Compensating Sextupoles

New experiment KLOE-2 started in 2014 to integrate 5fb⁻¹ in 3÷4 years

- CKM unitarity
- CPT invariance
- CP violation
- ChPT model of QCD
- Hadronic cross-section for muon g-2
- γγ physics
- Hidden sector searches

Drift Chamber

4m diameter - 3.7m length - 52k wires He:Iso=90:10 light gas mixture $\sigma_p/p = 0.4\%$ (45° tracks) $\sigma_{hit} = 150\mu m$ in XY and 2mm in Z $\sigma_{vertex} = 1mm$

dedicated talk Thursday morning

Inner Tracker

4 tracking layers 70cm active length 13cm – 20cm inner and outer diameters Ar:Iso=90:10 gas mixture 2% X₀ thickness 1.6k HV channels and 30k FEE channels

First cylidrical triple-GEM detector ever built

X strips and V pads readout

IT Layer2 - DC residuals

Central Calorimeter

$\sigma_{\rm E}$ = 45 MeV for 510 MeV photons

Barrel + 2 endcaps: 98% solid angle coverage Pb+SciFi sampling – $15X_0$ thickness $\sigma_E/E = 5.7\% / \sqrt{E}$ $\sigma_T = 54ps / \sqrt{E} \oplus 50ps$ PID capabilities using TOF

intrinsic σ_t < 90 ps for 510 MeV γγ events

QCALT – Quadrupole CALorimeter with Tiles

$\sigma_t \approx 1 \text{ ns}$ for cosmic muons

2 structures aside of IT 12 towers surrounding beam-pipe Tungsten+Scintillating tiles+WLS SiPM readout increase hermeticity for K₁ neutral decays

CCALT – Crystal Calorimeter withTiming capabilities

2 structures aside of IP 96 LYSO crystals customarily shaped SiPM readout extend photon acceptance down to 11° used as luminosity monitor

RF period reconstrucion with $\sigma_t \approx 1$ ns

Danilo Domenici - INSTR17 - 27.2.2017

Low Energy Taggers

2 stations inside the QCALT at ± 1m from IP 20 LYSO cristals + SiPM readout $\sigma_E/E = 10\%$ for E > 150 MeV 150 ÷ 400 MeV energy range essential for $2\pi^0$ resonance search

High Energy Taggers

20 30 40 50 60 70 80

2 stations after the dipoles at ± 11m from IP Plastic scintillator hodoscope + PMT readout $\sigma_E = 2.5 \text{ MeV} - \sigma_t = 200 \text{ ps}$ > 400 MeV energy range essential for π^0 resonance search

40 50

dedicated talk

Monday afternoon

KLOE-2 data-taking: Summary

KLOE-2 data-taking: Run 3

DAFNE performance

DAFNE complex consolidated in 2013 to improve up-time Main characteristics:

- Typical beam currents 1.4A (e⁻) and 1A (e⁺)
- 105 bunches stored with 2.7 ns spacing
- Top-up injections of e⁻ and e⁺ beams every 10 min
- Average up-time 80%

Best Luminosity achievements in KLOE-2 Data-taking

Max instantaneous: 2.21x10³²cm⁻²s⁻¹ Max hourly: 651.0 nb⁻¹ Max daily delivery: 13.4 pb⁻¹ Max weekly delivered: 76.3 pb⁻¹

good hour of operation

Typical Day

top-up injection results in a uniform instantaneous luminosity

L2 trigger rate is about 7 kHz 500 Hz from Φ physics 3 kHz from cosmic muons 2.5 kHz from Bhabha events the rest is background (mostly Touschek scattered particles)

Calorimeter end-caps counters and total current in Drift Chamber are used as benchmarks for evaluating the machine induced background

Danilo Domenici - INSTR17 - 27.2.2017

Beam parameters Monitor

Beam parameters are precisely measured by KLOE and used also as feedback to DAFNE DAFNE RF scan (550 keV steps) to precisely set the beam energy to Φ peak $\sqrt{s} = 1019.5$ MeV

Danilo Domenici - INSTR17 - 27.2.2017

Data Quality Monitor Benchmark Analysis

 $\begin{array}{l} \mathsf{K}_{\mathsf{S}} \text{ lifetime with } \mathsf{K}_{\mathsf{S}} \rightarrow \pi^{+}\pi^{-} \text{ (fully charged channel)} \\ \Phi \rightarrow \eta \gamma \text{ with } \eta \rightarrow 3\pi^{0} \text{ (fully neutral channel)} \\ \mathsf{K}_{\mathsf{L}} \rightarrow \pi^{+}\pi^{-} \text{ (fully charged channel)} \\ \Phi \rightarrow \eta \gamma \text{ with } \eta \rightarrow \gamma \gamma \text{ (fully neutral channel)} \\ \mathsf{K}_{\mathsf{L}} \rightarrow \pi^{+}\pi^{-} \text{ (fully charged channel)} \end{array}$

K_{S} lifetime with $K_{S} \rightarrow \pi^{+}\pi^{-}$

- Exponential function folded with a triple gaussian
- Time calculated from the projection of the decay length on the K_s momentum direction (negative tail due to resolution)
- Still space for improvement fully exploiting IT tracking

$\Phi \rightarrow \eta \gamma$ with $\eta \rightarrow 3\pi^0$

- Search for neutral rad with N_{prompt} > 5 clusters
- Background contribution to cluster distribution wrt 2002
- Select $\Phi \rightarrow \eta \gamma$ with $\eta \rightarrow 3\pi^0$ (clean 363 MeV recoil γ)

DAFNE Time Horizon

	2014				2015				2016				2017				2018				2019			
	Iquad	llquad	lllquad	IV quad	Iquad	ll quad	lll quad	IV quad	lquad	llquad	lll quad	IV quad	Iquad	llquad	lll quad	IV quad	Iquad	llquad	lll quad	IV quad	Iquad	llquad	lll quad	IV quad
KLOE-2																								
PADME																								
SIDDHARTA-2																								

KLOE-2 will end data-taking 31 March 2018
 Luminosity goal: 5 fb⁻¹ acquired on disk

- PADME will take data (with only LINAC) from 1 April 2018 to end 2018
 Statistics goal: 10¹³ positrons on target
- SIDDHARTA-2 will take data from January to July 2019
 Luminosity goal: 800 pb⁻¹ acquired on disk

The PADME experiment

DAFNE LINAC characteristics

Length: 50 m Particles: electrons or positrons Max energy: 730 MeV (e⁻), 530 MeV (e⁺) Energy spread: 0.5% Bunch rate: 1 to 50 Hz Intensity: up to 3 x 10¹⁰ part/bunch

The PADME experiment

Positron Annihilation into Dark Mediator Experiment

Signal: single photon in calorimeter

Background: bremsstrahlung, multiple photons

BGO crystals from L3 endcaps reshaped in 21x21 mm² 220 mm long bar<u>s</u>

diamond sensor 20x20x0.05 mm³

The SIDDHARTA-2 experiment

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

The SIDDHARTA-2 experiment

SIDDHARTA has already run at DAFNE in 2009 measuring the 1S level of kaonic Hydrogen SIDDHARTA-2 will be upgraded and has the goal to measure for the first time the kaonic deuterium

Conclusions

The upgraded KLOE-2 detector is fully operational and running since 2014, heading to collect 5 fb⁻¹ for the end of data-taking scheduled in March 2018

DAFNE is steadily delivering luminosity at an average of 10 pb⁻¹/day with tolerable background level and stable beam parameters

Quality of KLOE-2 data is monitored with benchmark channels and found in good agreement with the past

The DAFNE complex will operate until 2019 providing beams for PADME and SIDDHARTA-2 experiment

KLOE-2 data-taking: Monthly detail

KLOE-2 data-taking: Run 3 weekly detail

SPARC_LAB

Sources for Plasma Accelerators and Radiation Compton with Lasers And Beams

FEL + High Power Laser Research on new acceleration techniques using plasma wakefield both laser and beam driven

