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Our global objective and current activity

Development of liquid Ar detectors of ultimate sensitivity
for dark matter search and coherent neutrino-nucleus
scattering experiments and their energy calibration.

Our group is currently conducting researches in the

following directions, in the frame of Laboratory of

Cosmology and Elementary Particles (NSU and BINP) and in

the frame of DarkSide experiment:

- Measurement of electroluminescence (EL) yields in two-
phase Ar using a 9-liter detector.

- Problem of Ar doping with Xe and N2.

- Measurement of ionization yields of nuclear recoils in
liquid Ar using neutron scattering technique.

- Development of new readout technique in two-phase Ar
detectors using SiPM-matrices.



Experimental setup
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Neutron generator produced in BINP

To produce neutrons, a specially designed
neutron generator was used that
continuously emitted monoenergetic not
collimated neutrons with a kinetic energy

of 2.45 MeV obtained in the DD fusion
reaction.

The design parameters:
0 Neutron yield: 10° neutrons/s
0 Nominal current of ions: 50 uA
o0 Operating voltage: 80 kV

0 Insulation: SF,, 8 atm

Sttt



Study of proportional EL in two-phase Ar:
EL yields and amplitude spectra
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*The EL gap yield as a function of the electric field in the gap, measured using
PMT or SiPM signals. The amplitude spectrum of the total PMT signal from the

EL gap induced by X-ray from a mixture of the Cd and Am radioactive
sources.

*High EL gap yield of 15 pe/keV (1 pe/e) and good energy resolution of 22% at
60 keV have been reached at an electric field of 7 kV/cm in the EL gap.



The problem of doping Ar with Xe and N2
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*Photon emission and atomic collision processes in two-phase argon
doped with xenon and nitrogen: the most complete compilation over past
50 years (A. Buzulutskov, Eprint 1702.03612).

*The problem is currently under study in our group. You can find details

in the article.



Tonization yield

*A particle interaction in the liquid
phase produces primary scintillation
(S1) and ionization.

*The electrons are drifted away from
the interaction site by an electric
field and extracted into the gas where
they create secondary scintillation
(52). ”

*The ionization yield is the ratio of
the number of electrons escaping
recombination with positive ions (ne)
and the energy deposited by a nuclear
recoil (E).

‘Recently we have measured ionization
yields of nuclear recoils in liquid argon
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Measurement of ionization yield: raw signals

*The primary ionization charge in liquid
Ar was produced by either 60 keV
gamma from 241Am or 2.45 MeV
neutron from the DD-generator.

A typical oscillogram with a raw signal
and an integral spectrum for Am
isotope.

*The integral spectra for Am, neutron
and background runs.
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Measurement of ionization yield: experimental and
theoretical spectra
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To measure the ionization yield we subtracted the background-run contribution
from the neutron run. After this we subtracted the gamma-ray contribution,
resulting from a radiative capture in surrounding materials. Finally, the pulse
integral was normalized to that of 60 keV peak and we found a spectrum end-
point in units of ne.

The theoretical spectrum was convolved with an energy resolution function.

The ionization yield was calculated by dividing the end point of experimental
spectrum to the theoretical one.



Ionization yield (e /keV)

Measurement of ionization yield: results
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Towards nuclear recoil selection using S1/52
signals

Two-phase
CRAD

~ (511 keV)

v (511 keV)

BGO counter

Previously we used spectra subtraction to reject background events,
but there is also opportunity to use S2 / S1 as discriminator factor
for nuclear and electron recoil.

‘We irradiated Cryogenic Avalanche Detector by 22Na isotope, which
produce two gamma quanta. One of them was detected by BGO counter
and produced trigger and another one was detected by CRAD.

‘Unfortunately, S1 signal is low, so we plan to install additional SiMP
matrix on the detector bottom and improve light collection.



Neutron double-scattering concept for low-energy
calibration in LAr

Cryostat

D-D neutron generator

Having high spatial resolution, of 1 mm,
we expect reaching accuracy of about 2°
in scattering angle, corresponding to
nuclear recoil energy as low as a few keV.
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concept has been recently
realized in LXe in LUX
experiment
[arXiv:1608.05381]
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Summary

- We have measured the ionization yields of nuclear recoils in liquid
Ar using neutron scattering technique, in new ranges of energies and
electric fields.

- Neutron double-scattering technique, for low-energy calibration of
liquid Ar dark matter detectors, is being developed in our lab.

- We continue to study proportional electroluminescence in two-phase
Ar. In particular, we are trying to resolve the problem of doping Ar
with Xe and N2 in the two-phase mode.

- These studies are conducted in the frame of R&D program for the
DarkSide dark matter search experiment.
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Photon emission and atomic collision processes in
two-phase argon doped with xenon and nitrogen

—We present a comprehensive analysis of photon emission and atomic collision processes

in two-phase argon doped with xenon and nitrogen. The dopants are aimed to convert the VUV
emission of pure Ar to the UV emission of the Xe dopant in the liquid phase and to the near

UV emission of the N2 dopant in the gas phase. Such a mixture is relevant to two-phase dark
matter and low energy neutrino detectors, with enhanced photon collection efficiency for
primary and secondary scintillation signals.

Based on this analysis, it is shown that Xe dopant may successfully perform its job on VUV-to-
UV conversion in the liquid phase even in presence of N2 impurity, if its content does not
exceed 50 ppm.



Novosibirsk group presentation

Novosibirsk group on rare-event instrumentation operates within both
Budker Institute of Nuclear Physics (BINP) and Novosibirsk State
University (NSU), in the frame of Lab 3 (BINP) and LCEP (Laboratory
of Cosmology and Elementary Particles of Physics Department of NSU).

Also, we have recently joined DarkSide20k collaboration.

Group management:
A. Buzulutskov (leader), A. Bondar (deputy director of BINP and dean of Physics
Department of NSU), A. Dolgov (head of LCEP).

Group members:

A. Sokolov (senior scientist), L. Shekhtman (leading scientist), V. Nosov (engineer), R.
Snopkov (engineer), E. Shemyakina (PHD student), V. Oleinikov (PHD student),

A .Chegodaev (technician).

We also collaborate with S. Polosatkin and E. Grishnyaev from Plasma Division (BINP) on
DD neutron generator development.



Towards nuclear recoil selection using S1/52
signals
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Resolving problem of EL yield is in the progress.
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Qy(E,e) =n(E,e)/E

Tonization yield
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S1 / S2 separation in LXe

LUX experiment
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Ionization yield (e /keV)

Tonization yield

Qu(E,c)le” /keV] =n.(E,¢)/E
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Drift field Recoil energy [keV]|
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Phys. Rev. Lett., 112
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TABLE II. Measured ionization yields with uncertainties.

€ (V/ecm) Q, (e /keV) Statistical Systematic

240 3.6
640 4.9
1600 5.9
2130 6.3

+0.1
-0.1
+0.1
-0.2
+0.2
-0.2
+0.1
-0.3

+0.5
—-1.1
+0.6
-1.2
+0.7
-1.4
+0.8
-1.6




Tonization yield

Qy(E,¢c)le” /keV] =ne(E,e)/E Recently we have measured ionization
yields of nuclear recoils in liquid argon
*A particle interaction in the liquid at 80 and 233 keV (EPL, 108 (2014)
phase produces primary scintillation 12001)
(S1) and ionization.
*The electrons are drifted away from T | | |
the interaction site by an electric 14 £=23kViem .

field and extracted into the gas Jatfe model (N_/N;=1)

where they create secondary
scintillation (S2).

*The ionization yield is ratio of
number of electrons escaping
recombination with positive ions (ne)
and the energy deposited by a
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