A custom readout electronics for the BESIII CGEM detector

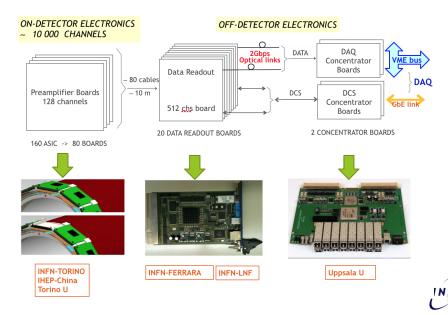
Manuel Dionisio Da Rocha Rolo on behalf of the CGEM-IT Group

INFN Torino

Instrumentation for Colliding Beam Physics (INSTR-17) Novosibirsk, Russia 27 February - 03 March, 2017

The BESIIICGEM project has been funded by European Commission within the call H2020-MSCA-RISE-2014.

- 1 Overview of the readout electronics for the BESIII-CGEM
- 2 On-detector Electronics: Design of a dedicated ASIC for CGEM Readout
- Preliminary results from TIGER Prototype
- On-detector Front-end Board
- Off-detector Electronics
- **10** Outlook for the CGEM electronics

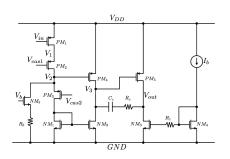


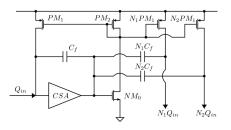
- Overview of the readout electronics for the BESIII-CGEM
- 2 On-detector Electronics: Design of a dedicated ASIC for CGEM Readout
- Preliminary results from TIGER Prototype
- On-detector Front-end Board
- Off-detector Electronics
- 6 Outlook for the CGEM electronics

Overview of the CGEM detector electronics

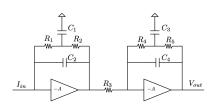
- Overview of the readout electronics for the BESIII-CGEM
- 2 On-detector Electronics: Design of a dedicated ASIC for CGEM Readout
- Preliminary results from TIGER Prototype
- On-detector Front-end Board
- Off-detector Electronics
- 6 Outlook for the CGEM electronics

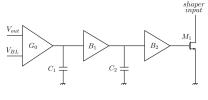
Front End ASIC for CGEM Readout



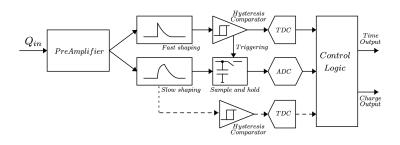

- Analogue readout of the CGEM:¹
 - enables the use of a charge centroid algorithm
 - ullet improves spatial resolution to better than 130 μm , while loosening the pitch strip to 650 μm
 - total number of channels ≈ 10000
- $\hookrightarrow\,$ 10 000 Channels in 80 Front-end Boards
- \hookrightarrow 2 ASICs per FEB
- - should provide time and charge measurement and feature a fully-digital output
 - Expected signal from CGEM: 30-50 ns Duration, 30-40 ns rising time, 10 ns falling time
 - · depends on gas mixture, gain and electric field
 - Input charge: 1 50 fC
 - Up to 100 pF sensor capacitance
 - 60 kHz Rate per Channel (safety factor of 4 included)
 - 4-5ns Time resolution
 - Power below 10 mW/channel
 - SEU-tolerant

Front End Design - Preamplifier

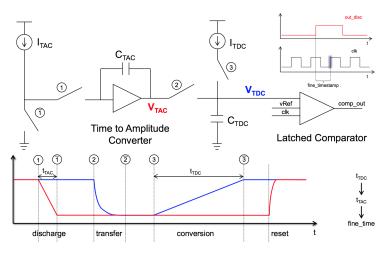

- low-noise two-stage cascode charge sensitive amplifier
- target ENC 800 electrons
- up to 80 mS (4 mA bias current) on input PMOS
- Gain = 10 mV / fC
- operation in μ TPC mode: requirement for a 5 ns time resolution
- signal split for time and charge measurement branches in two dedicated shapers



Front End Design - Dual Shaper

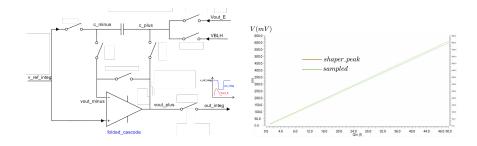

- 4 complex conjugate poles, peaking time defined by feedback loop RC
- semi-Gaussian output signal shape
- maximum signal width 1 μs on energy shaper, pile-up probability < 1% at 60 kHz
- 250 ns peaking time on energy branch, minimises ENC for charge measurement
- 60 ns peaking time for fast shaper, targets low-jitter timing measurement
- baseline DC (typ 300 mV) imposed by BLH circuit
 - transconductance function is slew-rate limited, rejects variations caused by fast signals
 - dominant time constant $au=1.5~{\rm ms}$ generated with very small bias currents

Overview of the channel



- Time-based readout
 - single or double threshold
 - time stamp on rising/falling edge (sub-50 ps binning quad-buffered TDC)
 - charge measurement with Time-over-Threshold
- Time and amplitude sampling
 - time stamp on rising edge (sub-50 ps binning quad-buffered TDC)
 - Sample-and-Hold circuit for peak amplitude sampling
 - slow shaper output voltage is sampled and digitised with a 10-bit Wilkinson ADC

TDC - principle of operation



- Low-power analogue TDC is based on time interpolation, event de-randomization with multiple hit buffering (4x TAC)
- interpolation factor 128 : time binning < 50ps with a 160 MHz clock

S/H amplitude measurement - principle of operation

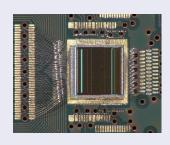
- ullet quad-buffers for voltage sampling, S/H circuit shares Wilkinson TDC for digitisation
- sampling starts at rising edge of fast (Time) or slow (Energy) shaper output
- sampling time (target equal to peaking time) is programmable, defined by simulation and confirmed by parameter scan in silicon
- deviation on measured amplitude versus peak amplitude, due to time-walk, is corrected by calibration

TIGER: ASIC Prototype for the CGEM Readout

- 64 channels: VFE, signal conditioning, TDC/ADC, local controller
- Digital backend inherited from TOFPET2, SEU protected
- on-chip bias and power management
- on-chip calibration circuitry
- fully digital output, LVDS IO
- 4 TX SDR/DDR links, 8B/10B encoding
- SPI configuration link
- power below 10 mW per channel
- nominal 160 MHz system clock
- sustained rate per channel: above 100 kHz
- 25 mm² UMC110 CMOS
- tapeout of first silicon: MPW May 2016

- Overview of the readout electronics for the BESIII-CGEM
- 2 On-detector Electronics: Design of a dedicated ASIC for CGEM Readout
- Preliminary results from TIGER Prototype
- 4 On-detector Front-end Board
- Off-detector Electronics
- 6 Outlook for the CGEM electronics

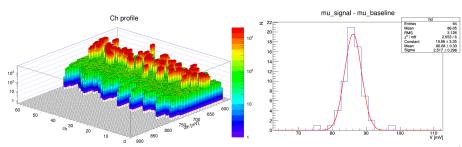
Status of ASIC Test Activities, in a nutshell



Summary of activities

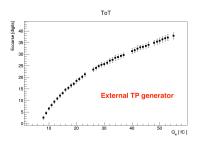
- Electrical characterisation started November 2016 tests on 6 chips
- Preliminary tests with diodes ongoing
- Test with planar and cylindrical GEM starting in March
- Trial TID run on testboards done, high-dose TID and SEU tests planned for mid-2017

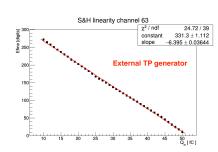
Summary of characterisation runs

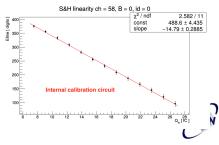

- √ R/W Channel/Global configuration registers
- √ Data TX and decoding
- ✓ (dual-) TDC operation and fine calibration
 - quantisation error lower than 40 ps r.m.s.
- √ Front-end performance
 - internal calibration circuitry
 - external charge injection (spy channel)
 - Charge measurement: Time-over-threshold
 - Charge measurement: S/H
- √ Baseline and threshold equalisation
- ✓ Channel intrinsic noise: noise vs. Cin (ongoing)

Gain dispersion

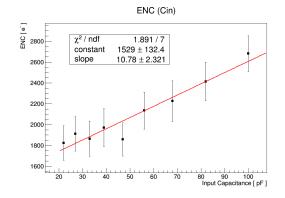
- Injection of Q=8fC with internal test-pulse
- √ Average gain above 10mV/fC (expected 11mV/fC from post-layout simulations)
- residual channel-to-channel dispersion (0.2 mV/fC r.m.s.)
- √ results after baseline equalisation: below 25 mV r.m.s. dispersion on the DC operating point





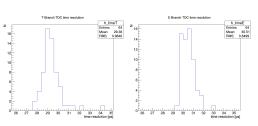

Charge Measurement - ongoing

- Charge Measurement with a Sample-and-Hold circuit or Time-ove-threshold (single/dual Vth)
- Calibration of dynamic range with external test-pulse generator (managed by test DAQ SW)
- Back-annotation to generate a parameter space for the internal calibration circuit
- Charge measurement below 5 fC a problem with single-threshold - Next: work on double-threshold operation
- Still, Fast Branch noise higher than expected



Noise measurements - preliminary results for Fast Branch

- Threshold scan (N meas/point, typ 50) for a fixed internal calibration circuit TP
- Normalise efficiency and fit with sigmoid for noise evaluation
- Repeat M times (typ 100)
- Plot noise and std deviation of measurement
- Sweep input capacitance and repeat measurement
 - \hookrightarrow ENC @ Cin 100 pF \approx 2500 e-
 - \hookrightarrow expecting 1700 e- from post-layout simulations at T=40C
 - PSRR, interference and grounding: under study

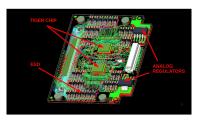


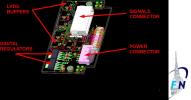
TDC Performance

- Dual-branch TDC scanned over dynamic range (sweep TP phase)
- Create LUT with gain and offset correction for all channels
- \hookrightarrow Average TDC quantization error after calibration ≈ 30 ps r.m.s.
 - Re-use method with TP injected to front-end to quantify intrinsic jitter - tbd

- Overview of the readout electronics for the BESIII-CGEM
- 2 On-detector Electronics: Design of a dedicated ASIC for CGEM Readout
- Preliminary results from TIGER Prototype
- 4 On-detector Front-end Board
- Off-detector Electronics
- 6 Outlook for the CGEM electronics

FEB Design for the on-detector electronics


Contact person: Marco Mignone - INFN Torino

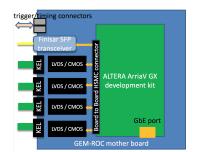

L3

- Board FE1 (56×40mm)
 - 2 ASICs, biasing and references, filtering
 - ESD protection network for 122 channels
 - 2 Analogue domain power regulators
 - connector towards anode
 - connector towards FF2
 - → Routing done, waiting confirmation on anode connector
- Board FE2 (56x30mm)
 - 2 Digital domain power regulators
 - 7 LVDS Buffers
 - connector towards FE1: power, signalling
 - → Routing done

L1-L2

- Board FE1 (56x52.8mm)
- Board FE2 (56x67mm)

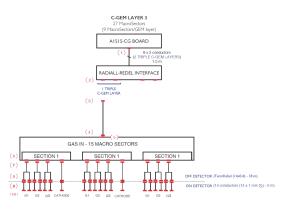
- Overview of the readout electronics for the BESIII-CGEM
- 2 On-detector Electronics: Design of a dedicated ASIC for CGEM Readout
- Preliminary results from TIGER Prototype
- 4 On-detector Front-end Board
- Off-detector Electronics
- Outlook for the CGEM electronics



Off-detector electronics overview

[ROC] A Cotta Ramusino (INFN Ferrara), [ATLB] Pawel Marciniewski (Uppsala Universitet)

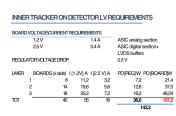
- Each of the 20 Read-Out Cards (ROC) handles 4 ASIC PCBs (8 ASICs)
- Prototype is based on an ALTERA e-kit (ArriaVGX FPGA), coupling to motherboard through HSMC high performance connector
- Motherboard provides electrical and physical interfaces to the ASIC carrier PCBs, to the
 data concentrator (bi-directional fibre optic links) and the BES-III Fast Control system.
 Ethernet port also available for monitoring and debugging.
- 2 Advanced Trigger Logic Board (ATLB) Data Concentrators manages interface with VME based BESIII DAQ system

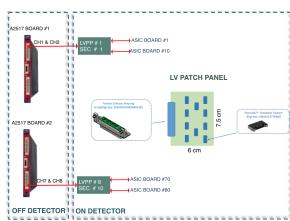


HV Distribution System

Contact person: Giulietto Felici - INFN LNF

CGEM LAYER	MACRO SECTORS	MICRO SECTORS	MICRO-SECTORS CAPACITANCE (nF)
1	12	120	4.6 nF
2	24	240	4.3 nF
3	36	360	4.5 nF


- each triple CGEM requires 7 voltages (range: 0-5 kV)
- each CGEM voltage must be distributed to many macro/micro sectors to reduce the section capacitance and the energy released in case of discharge
- the system allows to monitor the current dragged by each CGEM foil (nA sensitivity)
- the system allows to disconnect a single micro-sector in case of local short to minimise the system dead-zone



LV Distribution System

Contact person: Giulietto Felici - INFN LNF

- CGEM not be accessible after its insertion into the BESIII apparatus
- tracker services (i.e. HV and LV generation and distribution) designed with reliability as primary goal

- Overview of the readout electronics for the BESIII-CGEM
- 2 On-detector Electronics: Design of a dedicated ASIC for CGEM Readour
- Preliminary results from TIGER Prototype
- 4 On-detector Front-end Board
- Off-detector Electronics
- Outlook for the CGEM electronics

Outlook

On-detector FEB Design

√ on-schedule, space/volume criticality of L3 design overcame

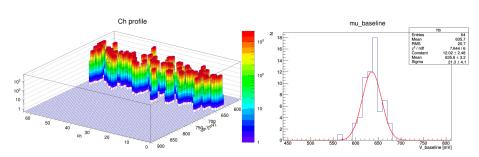
Status of Readout ASIC

- √ Time-based readout working properly
- √ Charge measurement with S/H ok
- $\rightarrow \ \mathsf{BLH} \ \mathsf{temperature}/\mathsf{VDD} \ \mathsf{sensitivity} \ \mathsf{minor} \ \mathsf{revision} \ \mathsf{ongoing}, \ \mathsf{corrected} \ \mathsf{for} \ \mathsf{engineering} \ \mathsf{version}$
- ightarrow Noise and grounding sensitivity under study
- √ Organising SEU, TID beam tests
- ✓ First tests with planar and cylindrical GEMs in March
- √ Engineering run during 2017, minor fixes and design flavours

Off-detector Electronics

✓ First smoke tests with TIGER ongoing - data reconstruction from test-pulses

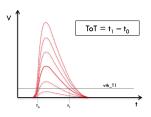
Thank You!

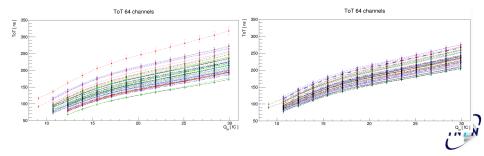

The BESIIICGEM project has been funded by European Commission within the call H2020-MSCA-RISE-2014.

Backup Slides

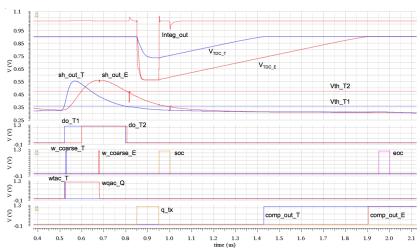
Baseline scan

- Threshold scan on all channels, for T1 only (single-threshold mode)
- Baseline saved at 50% level of the sigmoid
- √ below 25 mV r.m.s. dispersion




Threshold equalisation

- A 64-channel baseline scan is performed on every chip
- Threshold scan results are saved on a LUT
- The same effective threshold is set for all channels during acquisition



→ example of a ToT charge measurement before (below, left) and after (below, right) the
equalisation.

TDC/ADC - simulation of one event

