

The Tracking and Calorimeter Systems of the Mu2e Detector

David Hitlin Caltech INSTR17 February 28, 2017 On behalf of the Mu2e Collaboration¹

¹ The full Mu2e Collaboration is listed at <u>http://mu2e.fnal.gov/collaboration.shtml</u>

Mu2e is a search for $\mu \rightarrow e$ conversion on aluminum

- Mu2e will provide the most sensitive search for charged lepton flavor violation
 - Sensitivity improvement of four orders of magnitude SES = 2.5 x 10⁻¹⁷
- The signal of conversion is an electron with a momentum corresponding to

 $m_{\mu} - E_{\text{binding}} - E_{\text{recoil}}$ (104.97 MeV/c)

- The electron momentum is measured by a low mass straw tube tracker in a solenoidal magnetic field
- The calorimeter provides confirmation (require *E/p* =1) (at lower precision) and several other crucial functions:
 - Shower cluster-based seeding of the track-finding algorithm improves efficiency
 - Online software trigger capability
- The calorimeter is also crucial for background rejection:
 - μ decay in orbit (DIO)
 - Radiative capture (RPC): $\pi^-N \rightarrow \gamma N', \gamma \rightarrow e^+e^- \text{ and } \pi^-N \rightarrow e^+e^- N'$
 - Pions produced by slow antiprotons in the target
 - π/μ decay in flight
 - Electrons in the beam
 - Cosmic rays

David Hitlin The Tracking & Calorimeter Systems of Mu2e

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu}$$
$$\frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L (\bar{u}_L \gamma^{\mu} u_L + \bar{d}_L \gamma^{\mu} d_L)$$

The Muon Campus at Fermilab

The Collaboration in the Mu2e hall

The Mu2e experiment

 The sensitivity goal demands a total of ~ 6x10¹⁷ stopped muons in a 3 year run of ~ 6x10⁷ sec This requires a muon stopping rate of 10¹⁰/sec, placing demands on the detector technologies

Tracker requirements:

Calorimeter requirements:

Momentum resolution $\sigma_p/p < 180 \text{ keV}/c$ at 105 MeV	Energy resolution $\sigma_{\rm E}/{\rm E} \sim \mathcal{O}(5\%)$ at 105 MeV	
Adequate rate capability:	Time resolution $\sigma(t) < 500 \text{ ps}$	
20 kHz/cm ² in live window	Position resolution < 1 cm	
Tolerate beam flash rate of 3 MHz/cm ²	Adequate rate capability	
Have dE/dx capability to distinguish electrons	Operate in a 1T magnetic field in a 10 ⁻⁴ Torr vacuum	
from protons	Redundant photosensors and DAQ	
Operate in a 1T magnetic field in a 10 ⁻⁴ Torr vacuum	Survive in the neutron (10 ¹² n/cm ²) and gamma	
Provide maximum acceptance for conversion	(100 krad) radiation environment of Mu2e	
electrons at 105 MeV	Provide close to full acceptance for conversion electrons at 105 MeV	

The calorimeter is composed of annular disks

 Calorimeter disks are spaced apart by ½ wavelength of the pitch of a 105 MeV/c helical track

Beamline + detector layout

Cosmic ray veto (four layers)

TS-hole

Covers as much of the transport and detector solenoids as possible Nonetheless, timing properties of the calorimeter are required to achieve required cosmic ray rejection

Cryo-hole

PID: e/μ separation by TOF, E/p

CRV studies show that with a CRV inefficiency of 10^{-4} , an additional rejection factor of ~200 is needed in order to have < 0.1 fake events from cosmics in the signal window

Rare cosmic ray muon events can mimic a conversion electron signal event

Events of this type can be vetoed using the timing information from the calorimeter

> A rejection factor of 200 can be achieved with ~95% conversion electron efficiency

What happens in a microbunch ?

 Simulations encompass a full ~1µs, including all the background overlays from the beam flash, µ capture products, neutrons, *etc.* and properly accounts for contributions from previous bunches.

Tracker and calorimeter are designed to avoid DIOs and beam flash events

Tracker and calorimeter are designed to avoid DIOs and beam flash events

Tracker : straws ⇒ panels ⇒ planes

Straws: 5 mm OD; 15 µm metalized mylar wall

Panel: 2 layers, 48 straws each

Plane: 6 self supporting panels

Custom ASIC for time division: (≈ 5 mm at straw center

⇒ Stations ⇒ Tracker

Station: 2 planes

Tracker: 18 stations

Straws: laser cutting and termination

Panel assembly and straw tensioning

David Hitlin The Tracking & Calorimeter Systems of Mu2e INSTR17 February 28, 2016

Preamp and digitizer prototypes

Prototype test with cosmics

Signal sensitivity for a three year run

Calorimeter design

- The central hole region in the tracker and calorimeter allows us to be largely insensitive to DIO and beam flash backgrounds
- The calorimeter has two identical annuli, spaced apart by 700 mm (½ λ of the helical trajectory of the conversion electron)
- r_{inner} = 374 mm
 r_{outer} = 660 mm
 depth = 10 X₀ (200 mm)
- Each annulus contains 674 square Csl crystals with dimensions 34 x 34 x 200 mm³
- Each crystal is read out by two large area (14x20 mm²) six element UV-extended SiPMs

The analog front end electronics is directly mounted on the SiPM

- The digital electronics and voltageregulators are located in electronicscrates mounted on the periphery
- Calibration and monitoring are provided by a 6 MeV radioactive source and a laser system

David Hitlin The Tracking & Calorimeter Systems of Mu2e

Calorimeter structure exploded view

Three views

The front faces of the disk include thin AI tubing through which we flow irradiated fluorinert to provide a 6.13 MeV calibration γ

There is no internal crystal support structure: Tyvek-wrapped crystals are chosen by dimension, leveled and shimmed to minimize placement error

Calorimeter cluster-seeded track finding

The speed and efficiency of track reconstruction is improved by selecting tracker hits compatible with the time ($|\Delta t| < 50$ ns) and azimuthal angle of calorimeter clusters

Calorimeter energy resolution

- Achieving best possible energy resolution requires efficient shower clustering algorithm with detached cluster recovery and pile-up rejection
 - Cluster algorithm with detached cluster recovery

GEANT4 simulation

Pile-up rejection using waveform digitization

Calorimeter spatial, time resolution

Spatial resolution Compare predicted and Monte Carlo positions with signal events

 $\sigma_x = 6.3 \pm 0.2 \text{ mm}$ $\sigma_y = 5.8 \pm 0.2 \text{ mm}$

Time resolution Cluster time defined using the energy-weighted crystal times

 $\sigma_t = 109 \pm 1 \text{ ps}$

GEANT4 simulation

Frascati test beam results: CsI array + SiPM

- Test beam with 70-115 MeV electrons @ LNF
- 3x3 array of 30x30x200 mm³ Csl crystals
- Readout: SPL MPPCs
- Results
 - Energy resolution σ_E/E =7% dominated by shower leakage and beam energy spread
 - Time resolution $\sigma(t)=110$ ps.

The radiation environment

- The calorimeter radiation dose is driven by the beam flash (the interaction of the proton beam on target).
- The dose from muon capture is 10x smaller
- Dose is mainly to the inner radius (up to 400 mm)
- Highest dose/year ~ 10 krad
- Highest n flux/year on crys. ~ 2x10¹¹ n/cm²
- Highest dose/year on SIPM ~ 6x10¹⁰ n_1Mev eq/cm²

Qualify crystals up to 100 krad, 10¹² n/cm² Includes a safety factor of 3 Qualify photo-sensors up to 3x10¹¹ n_1MeV/cm² for a 3 year run David Hitlin February 28, 2016

The Tracking & Calorimeter Systems of Mu2e INSTR17

Measured CsI crystal properties

Radiation-induced noise (PMT+SiPM)

- RIN measurements of preproduction crystals from three manufacturers at Caltech and LNF are in agreement
- RIN and fast/slow component ratio are correlated This will be useful in developing final acceptance criteria

		conductor of
Side A	RIN PMT (KeV)	RIN SIPM (KeV)
C0011 - S	629	718
C0020 - A	713	1299
C0053 - SG	226	385

Extended response SiPMs match CsI spectrum

- Six 6x6mm cells in a 2x3 array
 - 50 mm pixels
 - Biased in series/parallel

Series coupling improves decay time

35 SiPM samples from each of 3 suppliers tested

SiPM preproduction articles

Hamamatsu

Advansid

Calibration and monitoring

1) The BABAR calibration source has been rebuilt to provide 6.129266 MeV γ s on demand

Prototyping/testing

Tracker schedule

CD-2/3b CD-3c Panel Design, Assemble, Test Single Plane Construction & Test Straw Production Panel Production Preamps **Digitizer & Readout** Install electronics in panels Tracker Assembly Post-move tests **KPPs** Satisfied **FY14 FY15 FY16 FY17**

Critical Path

Calorimeter schedule

Conclusions

- A straw tube tracker and a CsI-crystal-based calorimeter with SiPM readout form the heart of the Mu2e experiment, meeting the demanding physics requirements
- Operating in vacuum, they together provide conversion electron measurement, electron identification and background rejection in a high rate, high background environment adequate to give Mu2e a single event sensitivity of ~2.5 x 10⁻¹⁷ in a three year run
- Both systems areat the end of their prototyping phase and are about to enter production on schedule

