Construction and Quality Assurance of Large Area Resistive Strip Micromegas for the Upgrade of the ATLAS Muon Spectrometer

Philipp Lösel on behalf of the ATLAS Muon Collaboration

LS Schaile Ludwig-Maximilians-Universität München

Instrumentation for Colliding Beam Physics Novosibirsk 2017 02.03.2017

The Cluster of Excellence for Fundamental Physics

Philipp Lösel (LMU)

1 / 26

Outline

Motivation for the ATLAS NSW Upgrade Project

2 Construction of NSW Micromegas Quadruplets

- Design of the Micromegas Quadruplets
- Requirements for Micromegas Detectors
- Panel Construction
- Alignment of the Readout Boards

3 Quality Assurance of NSW Micromegas Quadruplets

- Planarity Measurement of the Panels
- Verification of Strip Alignment
- High Rate Irradiation Tests

Summary

High Luminosity Upgrade of LHC

- LHC high luminosity upgrade
 - 2021: Run 3: $2 \times \mathcal{L}_{design}$
 - 2026: Run 4: $5 7 \times \mathscr{L}_{design}$
- upgrade of inner end-cap region of Muon Spectrometer (Small Wheels) before Run 3

3 / 26

Motivation for the ATLAS NSW Upgrade Project

- full inclusion of New Small Wheel in trigger
- 90 % of trigger are fake in end-cap region
 - A track pointing to IP (good muon track)
 - B no hit in Small Wheel (fake)
 - C background event: not pointing to IP (fake)
- MDT efficiency loss: $\mathcal{L} > \mathcal{L}_{design} \Longrightarrow \varepsilon < 90 \%$ $\mathcal{L} > 2 \mathcal{L}_{design} \Longrightarrow \varepsilon < 60 \%$
- maintain current excellent momentum resolution for higher luminosity: $\Delta p_T \approx 15\%$ @ $p_T = 1 \text{ TeV}$ muons
- ⇒ New Small Wheel needs trigger and high rate capable new technology:
 - sTGC and
 - Micromegas

Outline

Motivation for the ATLAS NSW Upgrade Project

Construction of NSW Micromegas Quadruplets

- Design of the Micromegas Quadruplets
- Requirements for Micromegas Detectors
- Panel Construction
- Alignment of the Readout Boards

3 Quality Assurance of NSW Micromegas Quadruplets

- Planarity Measurement of the Panels
- Verification of Strip Alignment
- High Rate Irradiation Tests

Summary

Layout of the New Small Wheel

- disk-like design:
 - eight large sectors
 - eight small sectors
- sector: two Micromegas wedges sandwiched by two sTGC wedges
 ⇒ eight layers of sTGCs (trigger) eight layers of Micromegas (tracker)
- Micromegas wedges subdivided in two Micromegas quadruplets

Micromegas quadruplet strip layout

Design of the Micromegas Quadruplets

Micromegas quadruplets:

- three drift panels
- two readout panels
- four meshes mounted on drift panels
- four gas volumes between panels are the active Micromegas layers

Resistive Strip Micromegas

single active plane of a quadruplet:

- cathode
- grounded micro-mesh
- anode strip structure

position reconstruction:

- charge centroid over strip-cluster
- track reconstruction via *t*_{drift} = *f*(strip)

Production of Resistive Strip Readout Boards

- PCB with copper readout strips
- Kapton foil with resistive pattern aligned to readout strips with markers
- Kapton foil glued on top of readout strips
- silver connection between HV connector and resistive pattern
- 128 μm coverlay pillars as mesh support

maintain current excellent momentum resolution for higher luminosity: $\Delta p_T\approx 15~\%$ @ $p_T=1\,{\rm TeV}$ muons

- \Longrightarrow 100 μm spatial resolution in a single plane
 - 30 μm alignment accuracy of readout strips on the individual PCBs and particularly the alignment within a quadruplet
 - $\bullet~80\,\mu m$ accuracy perpendicular to the plane

• PCBs placed and aligned on granite table

- PCBs placed and aligned on granite table
- sucked to granite table and sealed with tape
 planarity transfer
- glue distributed on PCBs

- PCBs placed and aligned on granite table
- sucked to granite table and sealed with tape
 planarity transfer
- glue distributed on PCBs
- aluminum bars and honeycomb placed on top
- halfpanel cures over night in vacuum bag

- PCBs placed and aligned on granite table
- sucked to granite table and sealed with tape
 planarity transfer
- glue distributed on PCBs
- aluminum bars and honeycomb placed on top
- halfpanel cures over night in vacuum bag
- halfpanel removed and sucked to stiffback
- second set of PCBs placed on granite table
- glue distributed on PCBs

- PCBs placed and aligned on granite table
- sucked to granite table and sealed with tape \implies planarity transfer
- glue distributed on PCBs
- aluminum bars and honeycomb placed on top
- halfpanel cures over night in vacuum bag
- halfpanel removed and sucked to stiffback
- second set of PCBs placed on granite table
- glue distributed on PCBs
- stiffback with halfpanel placed on distance pieces ⇒ well defined panel thickness

Panel Construction in one Gluing Step

main difference: no halfpanel, only PCBs sucked to stiffback

Panel Construction in one Gluing Step

Philipp Lösel (LMU)

Construction and QA of NSW Micromegas

Alignment of the Readout Boards

Two Versions of Alignment: Precision Holes or Washers

precision

hole

- drilled @ position of target
- planar precision plates
- well aligned
- pins + precision holes

- accurate alignment frame
- global alignment on granite table
- relative alignment using pins

washer gluing

accuracy < 5 µm

Two Versions of Alignment: Precision Holes or Washers

Two Versions of Alignment: Precision Holes or Washers

Mesh Stretching and Mounting

mesh stretching:

- in cleanroom
- pneumatic clamps
- 1. step: glued on transfer frame
- 2. step: glued onto mesh frame
- tension $\approx 11 \, \text{N/cm}$

Mesh Stretching and Mounting

tension $\approx 11 \, \text{N/cm}$ ۰

۲

۲

۲

Construction and QA of NSW Micromegas

Stabilization of the Quadruplet Against Overpressure

deformation of drift region for outer detector layers due to 2 mbar overpressure in gas volumes ⇒ 4-7 interconnections integrated in Micromegas quadruplets

example: LM1 ANSYS FEM simulation

Precision Assembly using Dedicated Pins

pins and bushes precisely glued into the panel using precision templates \implies perfect alignment of both readout panels

Construction and QA of NSW Micromegas

Fully Assembled Micromegas Quadruplet

pressure sensors and micrometer adjustment units

- \implies assembly free of forces
- \implies free movement of pins in bushes

Outline

Motivation for the ATLAS NSW Upgrade Project

Construction of NSW Micromegas Quadruplets

- Design of the Micromegas Quadruplets
- Requirements for Micromegas Detectors
- Panel Construction
- Alignment of the Readout Boards

3 Quality Assurance of NSW Micromegas Quadruplets

- Planarity Measurement of the Panels
- Verification of Strip Alignment
- High Rate Irradiation Tests

Summary

Planarity Measurement of the First SM2 Readout Panel

thickness @ assembly holes: 11.559±0.032 mm (11.564 design)

Philipp Lösel (LMU)

Construction and QA of NSW Micromegas

Verification of Strip Alignment using Coded Masks

contact CCDs

- 5 \times 8 coded masks on each readout plane
- contact CCDs mounted on reference jig
- position and rotation of coded masks can be calculated
 - \implies verification of strip alignment

- Yellow squares: coding info

- Red squares: position where lines

with coding info cross - Accuracy: O(µm)

Verification of Alignment of the two Surfaces of a Panel

- measure coded masks (Rasmasks) on two opposite sides of the panel
- no contact between tool and panel
- reconstruct positions with respect to each other
- can also be used on whole quadruplet or with global reference masks
- calibration with one transparent mask

Calibration using Cosmic Muons, Alternative: X-Rays

2 external tracking references (2 MDTs) study of principle:

- 1 m² prototype detector with two readout boards
- no alignment tool used for gluing of anode structure

muon tracks show:

- variation of gap size between PCB plates during gluing
- shift: 100 μmm
- rotation: 350 μm/m
- **NSW-MM**: elimination of this effect by precise tooling

High Rate Behavior: GIF++

Gamma Irradiation Facility (GIF++) at CERN

- 14 TBq ¹³⁷Cs source
- 662 keV gamma flux $\approx 6 \times 10^7 \, \text{Hz/cm}^2$
- high rate irradiation tests of all modules

Summary

construction of Micromegas quadruplets for the ATLAS NSW Upgrade:

- mechanical requirement can be fulfilled
- precise alignment of readout boards using precision templates
- planarity transfer from granite table using vacuum technique
- interconnections to prevent chamber deformations

quality assurance of NSW Micromegas quadruplets:

- planarity measurements using laser triangulation heads
- verification of strip and surface alignment using coded masks
- calibration with cosmic muons or X-Rays
- high rate irradiation test in GIF++

Summary

construction of Micromegas quadruplets for the ATLAS NSW Upgrade:

- mechanical requirement can be fulfilled
- precise alignment of readout boards using precision templates
- planarity transfer from granite table using vacuum technique
- interconnections to prevent chamber deformations

quality assurance of NSW Micromegas quadruplets:

- planarity measurements using laser triangulation heads
- verification of strip and surface alignment using coded masks
- calibration with cosmic muons or X-Rays
- high rate irradiation test in GIF++
- high energy testbeam campaigns @ CERN to check spatial resolution, efficiency, etc.

Summary

construction of Micromegas quadruplets for the ATLAS NSW Upgrade:

- mechanical requirement can be fulfilled
- precise alignment of readout boards using precision templates
- planarity transfer from granite table using vacuum technique
- interconnections to prevent chamber deformations

quality assurance of NSW Micromegas quadruplets:

- planarity measurements using laser triangulation heads
- verification of strip and surface alignment using coded masks
- calibration with cosmic muons or X-Rays
- high rate irradiation test in GIF++
- high energy testbeam campaigns @ CERN to check spatial resolution, efficiency, etc.

THANK YOU

Backup

Alignment of Resistive Pattern to Readout Strips

very precise alignment frame mounted on granite table

- 2 external pin for global alignment
- 6 pins for relative PCB alignment
- washer gluing with telecentric camera

global alignment external external reference reference pin PCB 8 alignment alignment PCB 7 pins pins PCB 6 alignment frame

Philipp Lösel (LMU)

Alternative Method: SM2/LM1

precision holes drilled in PCB

- 5 precision plates
- well aligned
- pins + precision holes

```
precision
hole
```


drilled @ position of target

C-CCD

Rasnik Analysis I

Rasnik analysis

Rasnik mask: coded mask, every 9th

Rasnik Analysis II

Alignment with Compact CCD

Module05 - Read-Out panels - I

- Strip alignment (will be used for Mod05 panels):
 - C-CCDs inserted on table and stiffback plates: 20 masks per panel will be read-out;
 - Cameras & minimal heads tested, software finalized;
 - Calibration procedure
 - Jig built and precision spheres measured in Freiburg;
 - Surveyor is at Pavia

Cosmic Ray Facility, LMU Munich

- two Monitored Drift Tube (MDT) reference chambers
 - \implies two reference tracks
- two trigger scintillator hodoscopes
 - \implies second coordinate
 - \Longrightarrow segmentation of test Micromegas in 10 cm wide segments
- 34 cm iron absorber \Longrightarrow $E_{\mu} > 600 \text{ MeV}$
- active area 9 m 2 , $\Theta \in [-30^\circ, 30^\circ]$

 \implies investigation of the whole active area of 2-3 m² large Micromegas

1 m² Micromegas Chamber (L1)

- resistive strip technology
- active area: 0.92 × 1.02 m²
- two readout boards with in total **2048 strips**
- **pitch**: 0.45 mm
- Ar:CO₂ 93:7 vol% @ atmospheric pressure
- 16 APV25 front-end boards 57.6 mm wide (y - coordinate)
- **10 scintillator segments** 100 mm wide (x - coordinate)
 - \implies subdivision of detector in 16 APV \times 10 scintillators = 160 partitions

\implies calibration and alignment for each of the 160 partitions

Alignment - Using Reference Tracks (160 partitions)

- measurement of y position measurement of z position muon trac muon track measurement of y position (perpendicular tracks): actual detector position actual detector position residual via centroid method: $res = y_{measured} - y_{predicted}$ assumed detector position assumed detector position esidual in y [mm Entries 9609 Mean y 0.0222 2 Mean 0.2585 30 DMS Y 0.2528 0.5198 03.9 / 198 0.2805 + 0.004485 25 0 9232 + 0 0194 20 15 10 5 -3 -0.6 -0.4 -0.2 0.2 0.4 0.6 0 m v (average MDTs)
- measurement of z position (inclined tracks): $\Delta z = \frac{\text{res}}{\tan \alpha}$ $res = m_v \cdot \Delta z$ with $m_{\rm v} = \tan \alpha$

 $\Delta y = \text{res}$

fit with a straight line $\Rightarrow \Delta z = \text{slope}$ $\Delta y = \text{intercept}$

Verification of Strip Alignment: X-Rays

- The measurement is performed recording data with random triggers while the detector is irradiated with an X-ray gun.

 Two sets of data (0° and 180°) to compensate for possible misalignment between the X-Ray gun and the detector surface

 Huge statistic is needed (several millions events, after selection cuts), requiring at lest 2-3 hours for each position.
 A complete map of the detector surface would take quite a long time.
 The same test with lower statistics demonstrated not to provide a resolution <20 µm as required.

Construction and QA of NSW Micromegas

Plane to Plane Alignment – Mechanical Measurement

- readout panel alignment before assembly
- verification on both sides with laser tracker

Construction and QA of NSW Micromegas