

Characterization of novel prototypes of monolithic HV-CMOS pixel detectors for high energy physics experiments

<u>Stefano Terzo</u>, Emanuele Cavallaro, Raimon Casanova, Fabian Förster, Sebastian Grinstein, Jörn Lange, Carles Puigdengoles

In collaboration with University of Geneva

FACULTÉ DES SCIENCES

INSTR17: Instrumentation for Colliding Beam Physics Novosibirsk, 27th February 2017

- Introduction
 - The new Inner Tracker (ITk) for ATLAS phase II upgrade at HL-LHC
 - HV-CMOS Depleted MAPS for the ITk

- The H35 large area demonstrator chip
 - Sensor characterization with Edge-TCT
 - Monolithic matrix readout at IFAE
 - Very first test beam measurement of the CMOS monolithic matrix
- Conclusions and outlook

The ITk upgrade for HL-LHC

Replace the whole ATLAS Inner Detector with a new full-silicon Inner Tracker (ITk)

- New layout with 5 pixel barrel layers & large η coverage (extended inclined designs)
- Sensor technologies under investigation:
 - Outer pixel layers (large area to cover)
 - HR/HV-CMOS pixel detectors
 - n-in-p planar silicon sensors (150 µm thick)
 - Inner pixel layers
 - Thin n-in-p planar silicon sensors (100 μ m thick)
 - 3D silicon sensors (already in IBL and AFP)

...see "The Phase II ATLAS ITk Pixel Upgrade" poster (board 16)

3

4

S. Terzo (IFAE, Barcelona) - INSTR17

Possible CMOS devices

- Depleted Si sensors produced in High Resistivity/High Voltage CMOS technology
 - Charge generated in a small depleted region
 - Industrial CMOS process

potentially cheaper to cover large areas (full ITk pixels ~14 m²)

- Investigating the possibility of a 5th pixel layer of CMOS for ITk:
 - Hybrid passive pixel detectors:
 - Industrial CMOS process potentially cheaper
 - Standard interconnection to Front End chips
 - Hybrid Active Capacitive Coupled Pixel Detectors (CCPDs):
 - Active: in pixel amplification
 - Glue interconnection → reduced costs wrt. bump bonding
 - Already proven radiation hardness: M. Benoit et al., <u>arXiv:1611.02669</u>
 - Fully Monolithic Active Pixel Sensors (MAPS):
 - On chip discriminator and digital electronics
 - No interconnection costs
 - Reduced material

HV-CMOS Depleted MAPS

Two different philosophies:

- Electronics inside the n-well
 - Large fill factor: isolation of p-well inside a deep n-well
 - → Large sensor capacitance (~100 fF)
 - More uniform electric field
 - Shorter drift distance
 - ➔ Radiation hardness

- Electronics outside the n-well
 - Small fill factor
 - Very small sensor capacitance (~5 fF)
 - Low electric field regions
 - Longer drift distance
 - → Radiation hard??

HV-CMOS Depleted MAPS

Two different philosophies:

- Electronics **inside** the n-well
 - Large fill factor: isolation of p-well inside a deep n-well
 - → Large sensor capacitance (~100 fF)
 - More uniform electric field
 - Shorter drift distance
 - Radiation hardness

- Electronics outside the n-well
 - Small fill factor
 - → Very small sensor capacitance (~5 fF)
 - Low electric field regions
 - Longer drift distance
 - → Radiation hard??

S

Design characterized in this presentation

The H35 Demonstrator

AMS 350 nm High Voltage CMOS: different p: 20–80–200–1000 Ω cm

Designed by KIT, IFAE and Univ. of Liverpool

- Monolithic nMOS matrix:
 - Digital pixels with in-pixel nMOS comparator
 - Two flavors: with and without Time Walk compensation
- Analog matrices (2 arrays):
 - Different flavors in terms of gain and speed
 - To be Capacitive Coupled (CC) to FE-I4 readout chips (pitch 50x250 μm²)
- Monolithic CMOS matrix:
 - Analog pixels with off-pixel CMOS comparator
 - One comparator in the left sub-matrix
 - Two comparators in the right sub-matrix
- test structures without electronics
 for Transient Current Technique (TCT) studies

The H35 Demonstrator

AMS 350 nm High Voltage CMOS: different ρ: 20–80–200–1000 Ωcm

- test structures without electronics + for Transient Current Technique (TCT) studies

The H35 pixel structure

- Pixel size: 50x250 μm²
- Large fill factor: nMOS and pMOS transistors embedded in the same deep n-wells acting as collecting electrodes
 - p-substrate + 3 separate deep n-wells* to reduce the capacitance
 less noise, better timing power consumption
 - Short charge drift → reduced trapping after irradiation
 - More uniform electric field
- Bias voltage applied from the top
 - Single side processing
 - Bias voltage > 100 V

Institut de Física d'Altes Energies

S

Terzo

(IFAE,

Barcelona)

INSTR17

10

S. Terzo (IFAE, Barcelona) - INSTR17

Sensor characterization

- Characterization of H35 test structures:
 - 3x3 pixel structures w/o electronics
 - External pixels shorted together
 - Separate readout of the central pixel
- The Edge-TCT setup:
 - Infra-red laser (1064 nm)
 - Beam spot about 10 μ m FWHM
 - Pulses of about 500 ps
 - Readout: DRS4 evaluation board
 - 700 MHz bandwidth, 5 GSPS, 200 ns sampling depth
 - Illumination from the edge to study the depletion depth
 - FWHM of the charge collection profile of the central pixel is taken as measure of the depletion depth Sensor 2 (200 Ωcm)

TCT measurements and irradiations in collaboration with G. Kramberger and I. Mandic (JSI, Ljubljana)

External pixel readout

Central pixel readout

DNTUB

Depletion depth

- Edge-TCT measurements on 200 Ωcm test structures:
 - Irradiated with reactor neutron at JSI (Ljubljana) up to 2e15 n_{eq}cm²
 - Increase of the depletion depth with irradiations up to 1e15 $\rm n_{eq}cm^2$
 - ➔ initial acceptor removal effect

Effective doping concentration

Results published in <u>E. Cavallaro et al., JINST12, (2017) C01074</u>

12

Monolithic matrix readout at IFAE

PCBs, FPGA firmware and steering software developed at IFAE

- Software with interactive GUI
 - Steering FPGA and pulse generator
 - Tuning of the DAC registers
 - Data taking and operations
- Chip and FPGA operated at 320 MHz
 - 1 event = 25 ns (col, row, time stamp)

Select scan	Matrix	Scan parameters				
THRESHOLD_SCAN	CMOS ᅌ	Max events	100	Voltage min	0,200 V	
START Scan STOP Sc	Scan Continue scan	Injections	25	Voltage max	1,200 V	
		Timeout	100,00 ms 0	Voltage steps	50	
		Clocks	430	Event block	60	
		Event buffer	10000	Dead time	1	
		Column interval	5	Trigger delay	50	
		Row interval	15	C Threshold	0,600 V	
		Row interval	15	Threshold	0,600 V	h
		Row interval	15	C Threshold	0,600 V	h
		Row interval	15	C Threshold	0,600 V	ih
		Row interval	15	C Threshold	0,600 V	ih

CMOS matrix readout and tests

Test pulse injection and Sr-90 source scans Test Injections **Injection test** 300 Col [50 μm] 200 Mean x Mean y RMS x Sr90 source scan Threshold measurement and first fine tuning algorithm implemented SCurve Pixel 23 6 S-curves Pixel 0 15 25

S

14

CMOS matrix: threshold tuning

- Three different global tunings of the threshold:
 - The chip is tuned just with the global registers fine tuning was still not implemented
 - Input pulse amplitude: 0.54 V 0.7 V 0.87 V
 - Average threshold in the right matrix is always higher than in the left matrix

Test beam setup at CERN SpS

UniGe FE-I4 Telescope*

- 6 ATLAS FE-I4 planes (pitch: 50x250 μm²)
- 2 planes rotated 90 degrees to increase resolution in Y
- RCE readout system**

H35demo PCB

• CMOS matrix aligned in the beam

IFAE Readout system

180 GeV π beam

Integration with the UniGe FE-I4 telescope (trigger-busy scheme)

- Triggers from the telescope (RCE HSIO based) reach the Xilinx FPGA board
- Busy signal from the FPGA stops telescope DAQ until the H35 chip is ready
- Triggers (events) are written sequentially by the separate DAQs
- System running at 25 ns with >2 kHz trigger rate
- Re-synchronization of the data based on the trigger time stamp difference
- Track reconstruction and analysis with the Judith software

In collaboration with University of Geneva (UniGe)

*DOI: <u>10.1088/1748-0221/11/07/P07003</u> **DOI: <u>10.1109/NSSMIC.2014.7431254</u>

16

Readout and trigger

- Column drain architecture with priority encoding (same as ATLAS FE-I3 chip)
- Limitations of the H35 demonstrator chip
 - Un-triggered readout
 trigger logic implemented in the FPGA
 LO
 - No zero suppression \rightarrow also performed at the FPGA level

Long readout time (>1 μs)

Region of Interest (Rol)

Y position [µm]

3500

3000

2500

2000

1500

1000

500

10

Terzo (IFAE, Barcelona) INSTR17

S

BIST

Hit efficiency summary

- Higher threshold requires more bias
 - → increase the depletion depth
- Higher efficiency in the left matrix
 - Mean threshold right > mean threshold left
 - Right matrix: efficiency lost close to pixel edges

19

Conclusions & outlook

Institut de Física d'Altes Energies

- Characterization of the H35Demo chip at IFAE
 - Edge-TCT measurements of irradiated sensor test structures
 - Acceptor removal effect observed for low resistivity after irradiation
 - New readout system developed for the H35Demo monolithic matrices
 - Tuning and readout at 320 MHz clock (25 ns events)
- Very first time of the H35 monolithic CMOS matrix in a test beam
 - New readout system developed at IFAE + Geneva FE-I4 telescope at CERN SpS
 - Measured hit efficiency for 200 Ωcm samples before irradiation up to 98% at 120 V even with a partially tuned chip
- What's next:
 - 200 Ωcm sensors sent for irradiation up to the HL-LHC fluences expected for the fifth pixel layer of ATLAS ITk
 - In Ljubljana with neutrons: from 2 to 20e14 n_{eq}cm⁻²
 - At KIT with protons: 1 and 10e14 n_{eq}cm⁻²
 - New test beam at Fermilab in April this year
 - Irradiated samples & un-irradiated with different resistivities (20–80–200–100 Ω cm)
 - Readout system improved: no re-synch needed, larger trigger window, better tuning with low thresholds

Backup slides

Test structure IV curves

Depletion: after irradiation

- Irradiation at the TRIGA neutron reactor at JSI, Ljubljana:
 - Now: 2e14, 5e14, 10e14, 20e14 n_{eq}cm⁻²
 - Next steps: 5e15 and 1e16 n_{eq}cm⁻²
- Acceptor removal effect visible for lower substrate resistivities which leads to an <u>increase of the depletion depth</u> <u>after irradiation</u> up to 2e15 n_{eq}cm⁻²

 Due to the low initial acceptor concentration in the 1000 Ωcm sample the creation of stable acceptors dominates and the <u>depletion depth</u> <u>decreases after irradiation</u>

Depletion: before irradiation

Terzo (IFAE, Barcelona) - INSTR17

Synchronization and alignment

 Correlations between the hits in the H35 CMOS matrix and a telescope plane show the successful synchronization of the data

Consistent residual shape and width after alignment and tracking with Judith

H35 – matrix IVs

Hitmap

Institut de Física d'Altes Energies

Trigger readout

Institut de Física d'Altes Energies

N.B: FPGA time-stamp != chip time-stamp: it is not the time of the hit recorded by the chip, but just the time when the hit reach the FPGA

Power vs. rise time

- Simulation of the power consumption as a function of the rise time for analog pixels with high gain
- For low gain pixels (-p-tub +extra capacitor) the rise time can go down to 20 ns with aggressive settings

Threshold noise

- Threshold:
 - Mean = 0.54 V
 - Std. Dev. = 0.04 V

- Mean < 0.03 V
 - Std. Dev. ~0.003 V