

Sensors for the CMS High Granularity Calorimeter

INSTR17 at BINP, Novosibirsk

Andreas Alexander Maier (CERN) on behalf of the CMS Collaboration Wed, March 1, 2017

The CMS HGCAL project

Answer to HL-LHC challenges:

Pile-up: up to µ=200
 Otiming information valuable for mitigation

•Radiation exposure: up to 10¹⁶ neq/cm²

Si well studied and under control for high fluences

replace entire endcap calorimeter, with a radiation-hard, fast timing, High Granularity Calorimeter (HGCAL)

Project details:

- High granularity sampling calorimeter for particle flow (as studied by CALICE)
- Active development in
 - TDAQ
 - electronics architecture
 - particle flow reconstruction and physics performance
- TDR by end of 2017

Technical proposal: https://cds.cern.ch/record/2020886/files/LHCC-P-008.pdf

ECAL: Electromagnetic CALorimeter HCAL: Hadronic CALorimeter neq: 1 MeV neutron equivalent CALICE: CAlorimeter for Linear Collider Experiment TDR: Technical Design Repori TDAQ: Trigger and Data AcQuisition

The CMS HGCAL layout

Active Elements:

 Hexagonal Si sensor modules consisting of several 100 hexagonal sensor cells
 "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers
 Scintillating tiles with SiPM readout in lowradiation regions

Key parameters:

- 600 m² of silicon
 - hexagonal shape saves space on wafer
- Power at end of life ~60 kW per endcap
 25% due to leakage current
- CO₂-cooled operation at -30°C

Main components:

- •EE Si, Cu & CuW & Pb absorbers •28 layers: 25 X_0 + ~1.3 λ
- FH Si & scintillator, steel absorbers
 12 layers: ~3.5 λ
- BH Si & scintillator, steel absorbers
 11 layers: ~5.5 λ

SiPM: Si PhotoMultiplier
BH: Backing HCAL
FH: Front HCAL
EE: Endcap ECAL
ASIC: Application-Specific Integrated Circuit

The HGCAL design

- Thinner Si sensors for high fluence regions \rightarrow better signal at high fluence
 - high- η region: sensors with **120 \mum** active thickness
 - Iower-η regions: 200 μm & 300 μm active thickness
- Smaller cell size in central region \rightarrow less occupancy, less noise

Single diode tests

Measured properties:

- Bulk current → power consumption, noise
- Capacitance
- CCE with laser signal
- MIP studies with beta source
- Timing performance (test beam)
- Effects of annealing

See Esteban Curras Rivera's contribution for the IPRD16 conference for more details on the diode tests

First irradiation results:

- Good signal at 1x10¹⁶ neq/cm² within voltage range!
- Single MIP signal is resolvable from noise
- Intrinsic timing resolution of
 - < 50 ps for S/N > 10
 - ~20 ps for S > 20 MIPs

dd: deep diffusion	MIP: Minimum Ionizing Particle
FZ: Float Zone	MCP: Micro-Channel Plate
EPI: Epitaxial growth	S: Signal
CCE: Charge Collection Efficiency	N: Noise
HPK: Hamamatsu	

Detector optimization ongoing:

- Wafer size (6" or 8")
- Contact pad layout for wire bonding (e.g. jumper cells)
- Sensor type (n-in-p or p-in-n)
- Interpad distance

Ongoing activities:

16.5 cm

- (Automated) sensor tests
- Design studies for TDR
- p-stop layout validation
- Radiation testing

Andreas A. Maier

Modules for HGCAL

Full wafer measurements

6" 135 pad HPK sensors measured at FNAL

Leakage current Capacitance Lower leakage currents Mouse bites & calibration cells show Higher leakage currents in the calibration cells in the edge region lower capacitances than full cells (smaller size) [Yu] 2.5 I test capacity guard ring value scaled by 0.5 test capacity 2 value scaled by 0.5 scaled by 0.1 test canacity Ц Ц test capacity 3 value scaled by 0.1 1.5 0.5 pad numbers according to probe card values for U = 300.0 V pad numbers according to probe card values for U = 1000.0 V

•Detector conditions: all cells biased by probe card

- Excellent performance of the tested wafers
 - •behavior as expected for IV and CV measurements
 - •no breakdown until 1000 V bias voltage observed among all tested sensors

For more information on the probe card, see backup

2016 beam tests

- Cassettes consist of
 - one ore two modules mounted
 - ${\ensuremath{ \bullet}}$ on absorber plates with electronics and cooling
- Can be easily stacked and removed from frame
- Mechanics as well as DAQ is designed scalable

The test beam setup

FNAL

- Up to 16 HGCAL modules tested
- e⁻ beam at 4-32 GeV
- Protons at 120 GeV
- \bullet 0.6-15 X₀ absorber configuration

CERN

- Up to 8 HGCAL modules tested
- π/µ at 125 GeV
- e⁻ beam at 20-250 GeV
- ${old O}$ 6-15 $X_{_0}$ and 5-27 $X_{_0}$ absorber configurations

Electron showers passing through 8 layers (27 X_0)

INSTR17 at BINP, Novosibirsk

Andreas A. Maier

Test beam results

Results

- Energy response is linear
- Series of beam tests planned for 2017 Shower profile and energy resolution agree well with simulation
- \circ dE/dx weighting improves energy resolution by ~20%

TB: Test Beam FTFP BERT EMM: A fast electromagnetic shower model optimised for CMS HCAL

Conclusions

- •Good progress on the way to a full HGCAL
- •Series of beam tests to understand and demonstrate detector performance
- Sensor testing ongoing
- •Potential timing precision of < 50 ps
- •Main design decisions in the coming months leading to TDR end of 2017

Thank you for your attention!

Andreas Alexander Maier (CERN) andreas.alexander.maier@cern.ch Wed, March 1, 2017

Backup - The HGCAL schedule

Backup - Full wafer test setup

• Bias all sensor cells during the tests at the same time for realistic test conditions

- contact and bias all cells at the same time using probe card
- spring-loaded pins (pogo pins) for uniform contact over whole plane
- Depending on the sensor layout, test 128 up to 512 channels
- Newly designed switching matrix placed as a plugin card on top of the probe card

GPIB: General Purpose Interface Bus