

The Cylindrical GEM Inner Tracker of the BESIII experiment: prototype test beam results

INSTRUMENTATION FOR COLLIDING BEAM PHYSICS INSTR-17 BINP, Novosibirsk, Russia ~ 27 February ~ 3 March, 2017

- **BESIII** experiment
- CGEM-IT project description
- ▶ Test beam of prototype I PLANAR
- Test beam of prototype II CYLINDRICAL

BESIIICGEM project has been **funded by the European Commission** within the call H2020-MSCA-RISE-2014

Members of the consortium: INFN (Ferrara, LNF, Torino)

- Mainz
- Uppsala
- **IHEP**

ithin 014 :: HORIZON 2020

BESIII @ BEPCII

Beijing Electron Positron Collider II

Data taking 2009 - today

BEijing Spectrometer III

charm & τ factory @ Ecms = 2 - 4.6 GeV

C*

Inner Tracker: the present - MDC

Multilayer Drift Chamber

- Inner Tracker:
 - 8 stereo layers
- Outer Tracker:
 - 12 axial layers
 - 16 stereo layers
 - 7 axial layers

CGEM~IT/L. Lavezzi/INSTR~17

- momentum resolution
- $r \sim \phi$ spatial resolution 130 μ m
- azimuthal coord. res. 2 mm

0.5% @1 GeV/c

Inner Tracker: the future - CGEM

Cylindrical Gas Electron Multiplier

REQUIREMENTS

substitute the 8 inner layers of the MDC with 3 layers of cylindrical triple-GEM

- momentum resolution 0.5% @1 GeV/c
 r-φ spatial resolution 130 μm
- azimuthal coord. res.
- able to run until

130 μn 1 mm

inner radius 78 mmouter radius 179 mm

angular coverage 93%
X₀ < 1.5 %
particle rate ~ 10^4 Hz/cm²

What is a GEM?

It is a gas detector invented by F. Sauli in 1997

The GEM foil is a metal-coated polymer covered

with holes $\varnothing\sim 50~\mu m$

- 3~5 μm copper
- 50 μm kapton
- 3 µm copper

[S.Bachmann et al., CERN-EP/99-48]

The GEM foil is placed between anode and cathode and a potential is applied to its faces (200/400 V)

An electric field is then present and the drifting electrons along the field lines enter the holes where the field is sufficiently intense (some tenth kV/cm) to create avalanche multiplication \rightarrow GAIN

What is a triple GEM?

Triple GEM are detectors where three GEM foils are arranged between anode and cathode, granting a final gain $\sim 10^3/10^4$ with lower voltages applied \rightarrow lower discharge rates

CGEM~IT/L. Lavezzi/INSTR~17

What is a cylindrical triple GEM?

The first cylindrical triple GEM was built and installed for KLOE-2 (Frascati)

2

[A. Balla *et al.*, NIM A732(2013)221]

BESIII borrows the construction procedure from KLOE-2:

- 1. Production of the GEM and electrodes foils. Gluing of two foils to get a bigger surface
- 2. Shaping and gluing on molds: the electrode is put around the mold and surrounded by a vacuum bag to obtain the perfect cylindrical shape
- 3. Layer assembly by means of the Vertical Inserting Machine

CGEM~IT/L. Lavezzi/INSTR~17

[A. Balla *et al.*, 2014 JINST 9 C01014]

Measurements with triple GEM in magnetic field & with analog readout

Measurements with triple GEM in magnetic field & with analog readout

Mechanics

Rohacell 31

Measurements with triple GEM in magnetic field & with analog readout

permaglass rings only outside the active area

Measurements with triple GEM in magnetic field & with analog readout

Torino Integrated Gem Electronics for Readout [M. Rolo "A custom readout electronics for the BESIII CGEM detector"]

 $\rho = 31 \text{ kg/m}^3$

 $X_0 \sim 0.33\%$ /layer

Mechanics

Rohacell 31

permaglass rings only outside the active area

Readout

Dedicated ASIC

Measurements with triple GEM in magnetic field & with analog readout

Torino Integrated Gem Electronics for Readout [M. Rolo "A custom readout electronics for the BESIII CGEM detector"]

$\rho = 31 \text{ kg/m}^3$ $X_0 \sim 0.33\%/\text{layer}$

Mechanics

Rohacell 31

permaglass rings only outside the active area

- Readout
 - Dedicated ASIC
 - Jagged strips

CGEM~IT/L. Lavezzi/INSTR~17

Inter-strip capacitance reduced of ~30%

The TB environment

Location

H4 beam line @ in the SPS line North Area, CERN

Magnetic field:
GOLIATH dipole
B from -1.5 T to +1.5 T

Beam

- muons/pions
- momentum: 150 GeV/c
- intensity = 2k evts/spill

Test Beams

- with planar chambers ~ June 2015
- with planar chambers ~ May/June 2016
- with cylindrical chamber ~ October 2016

PLANAR chambers

- ▶ 10×10 cm² triple GEM
- \mathbf{x} view + y view
- strip pitch 650 μm
- gas mixtures:
 - Ar/CO₂ (70/30%)
 - Ar/Iso (90/10%)
- ASIC APV~25

Results for orthogonal tracks and $\mathbf{B} = 0$

Issue 1: inclined tracks

• the cluster size increases and the charge distribution at anode is no longer gaussian

 \rightarrow the charge centroid starts failing

Issue 2: magnetic field = 0

The simultaneous presence of **E** and **B** creates a Lorentz force \propto qE + B which bends the drift electron trajectories \rightarrow charge distribution nomore gaussian

 \rightarrow again, charge centroid failing

[R. Farinelli, IEEE NSS/MIC Strasbourg, 2016]

Issue 3: issue 1 + issue 2

When inclined tracks are inside magnetic field there are two possibilities:

- *focusing* effect: Lorentz & inclination angles concordant
- \rightarrow smaller cluster size
- *de-focusing* effect: Lorentz & inclinaton angles discordant
- \rightarrow bigger cluster size

A new position reconstruction method is needed

The µ–TPC mode

▶ inclined tracks and/or magnetic field → increased cluster size → μ -TPC mode available [M. Iodice, JINST, 9 C01017, 2014]

• the drift gap is seen as a "*micro* time projection chamber" and the position of **each primary ionization** is reconstructed by knowing the electron drift velocity

The µ–TPC mode - resolution

CC and μ -TPC are complementary \rightarrow a combination of the two will give the best resolution

Summary for PLANAR chambers

• the planar chamber tests with and without magnetic field and in different configurations of HV and field showed that the **combination of charge centroid and \mu-TPC** reconstruction modes are going to provide the required position resolution of ~130 µm in xy plane

In May, a testbeam on high intensity electron beam @ MAMI, Mainz is foreseen to evaluate the μ -TPC capabilities in such an environment

CYLINDRICAL chamber

first testbeam with layer 2 prototype
gas mixture Ar/CO₂ (70/30%)
x & v views, only x instrumented
3 mm drift gap

OBJECTIVES

- test the **stability** of the detector under beam conditions
- comparison between cylindrical and planar chamber results
- test under high intensity pion beam

Reaction to beam conditions

• tested also under *extreme* conditions:

HV = 400 V for each GEM foil \rightarrow 10⁵ gain: stable

high intensity pion beam, up to some tenth of kHz/cm²: no current peaking problem

Summary for CYLINDRICAL chamber

- the first test of the cylindrical prototype was successful: it showed great stability under different HV and drift field settings
- the evaluation of efficiency and resolution is ongoing
- further tests with cosmic and radioactive source are ongoing
- The layer I construction is ongoing and the next step is the testing on it

Conclusions

The **planar** chambers already allowed studies on resolution and efficiency

The same studies on the cylindrical GEM are ongoing

The **full CGEM-IT** under construction: expected to be completed by the end of 2018

Thank you for your attention

Cylindrical chamber

first test with layer 2 prototype
gas mixture Ar/CO₂ (70/30%)
x & v views, only x instrumented
3 mm drift gap

Example of HV		Thickness (mm)	Voltage (V)	Field (kV/cm)
and drift field	Cathode			
settings	Gap	3 or 5	375/625	1.25
Ar/CO2 70/30	G1_TOP			
3655/3905 V	Gap	0.050	360	72
	G1_BOTTOM			
	Gap	2	600	3
	G2_TOP			
	Gap	0.050	360	72
	G2_BOTTOM			
	Gap	2	600	3
	G3_TOP			
	Gap	0.050	360	72
	G3_BOTTOM			
	Gap	2	1000	5
	Anode		ground	

CGEM~IT/L. Lavezzi/INSTR~17

The x strips pitch is shrinked in coincidence of v strip crossings in order to decrease the inter-strip capacitance.

In figure:

• y axis: value of the capacitance at crossing between x and v strips (pF) from simulations

• x axis: value of the dimensions of the simulated area in MAXWELL

Readout @ testbeams

CGEM~IT/L. Lavezzi/INSTR~17

The ASIC used for the readout is the APV-25
Each APV has 128 channels, each one reads the charge and time of an anode strip
Each channel has a flash-ADC which performs

Each channel has a flash-ADC which performs 27 **charge** samplings (one every 25 ns). The highest value is the "hit" charge.

The number of bins in the charge axis is 2500 bins (-560; +1950)

A typical event lasts ~ 100 ns ($\rightarrow 4/5$ time bins)

- ASIC = Application Specific Integrated Circuit
- PCB = Printed Circuit Board
- APV = Analogue Pipeline Voltage mode 31

CGEM~IT/L. Lavezzi/INSTR~17

[M. Iodice, JINST, 9 C01017, 2014]

The μ–TPC mode

inclined tracks and/or magnetic field → increased cluster size → µ-TPC mode available
the drift gap is seen as a "*micro* time projection

chamber" and the position of each primary ionization is reconstructed by knowing the electron drift velocity

Lorentz angle vs drift field Optimization of the charge centroid @ 1 Tesla

