Fermilab Program and Plans

Dmitri Denisov, Fermilab
Instrumentation for Colliding Beam Physics, February 27 2017
U.S. Particle Physics Strategy

- In 2014 U.S. strategic planning panel provided recommendations covering all main topics of the U.S. particle physics

- They are grouped around “science drivers”
 - Use the Higgs boson as a new tool for discovery
 - Pursue the physics associated with neutrino mass
 - Identify the new physics of dark matter
 - Understand cosmic acceleration: dark energy and inflation
 - Explore the unknown: new particles, interactions, and physical principles

- Fermilab is leading and actively involved in the experiments devoted to all “science drivers”
8 GeV Proton Booster
120 GeV Main Injector

SeaQuest
Test beams

Muon
Campus:
(g-2, Mu2e)

Short Baseline Neutrino:
MicroBooNE
(ICARUS, SBND)

Long Baseline Neutrino:
NOvA, MINERvA
(DUNE)
The accelerator complex is focusing on delivering beams to
- Neutrino, fixed target, high intensity muon beams and test beam experiments
- Increased beam power from ~350 kW to ~700 kW (PIP project)
Main Injector Beam Delivery in FY 2017

Providing $\sim 5 \cdot 10^{20}$ protons at 120 GeV to the neutrino program per year
Beam Power to Main Injector Neutrino Program

- Upgraded booster and main injector over last three years
- Doubled beam power to ~700 kW
Re-use of the antiproton production tunnels for muon production/cooling
First muon beam to g-2 experiment this year, to mu2e experiment in 2020
Muon Magnetic Moment g-2 experiment

- Puzzle of ~3σ from BNL 2004 result
 - New physics?
 - Experimental effect?
- Coil moved to Fermilab from BNL
 - Higher intensity beam
 - Better systematics
- ~4 times better accuracy, x20 data by 2019
- Start data collection in 2017
Lepton Flavor Violation: Mu2e

- Constructing experiment mu2e
 - High intensity muon flux stopped on a nuclear target
- Monochromatic electron emission from μ to e conversion
 - \sim4 orders of magnitude improvement vs today’s limits down to $\sim10^{-17}$ branching
Short Baseline Neutrino (SBN) Program

The three detector SBN program can make a definitive statement on the LSND/miniBooNE anomaly with the potential for discoveries in neutrino physics and developments in LAr technology for DUNE.

Booster Neutrino Beamline (BNB)
- 8 GeV proton
- ν flux peaks \(\sim 700 \text{ MeV} \)
- fluxes well understood (HARP + MiniBooNE)
- Near surface (~10m): modest civil construction cost
MiniBooNE Excess and ICARUS

- Excess of low energy neutrino events might be an indication of new physics
- ICARUS detector is under refurbishment at CERN and will arrive at Fermilab this year
 - Largest LAr TPC detector
MicroBooNE is the first LAr TPC detector designed and built at Fermilab

- 170 tons of ultra-pure argon
- Collecting data since 2015
- Expect first physics results this year
Long Baseline Neutrino Program

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{13} & 0 \\
0 & s_{13}e^{i\delta} & c_{13}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & e^{i\alpha/2} & 0 \\
0 & 0 & e^{i\alpha/2+i\beta}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

\[\Delta m_{21}^2 = 7.54^{+0.26}_{-0.22} \times 10^{-5}\text{ eV}^2\]

\[|\Delta m_{32}^2| = 2.42^{+0.07}_{-0.11} \times 10^{-3}\text{ eV}^2\]

\[m(\nu_e) < 2.3\text{ eV (95\% CL)}\]

\[\theta_{12} = 33.6^{+1.1}_{-1.0}\text{ deg}\]

\[\theta_{23} = 38.6^{+2.4}_{-1.4}\text{ deg}\]

\[\theta_{13} = 9.0^{+0.4}_{-0.5}\text{ deg}\]

\[m_{\text{lightest}} = ?\]

\[\text{sign } \Delta m_{32}^2 = ?\]

\[\delta = ?\]
NOvA Experiment at Fermilab

- “Off axis” neutrino experiment with 14 kton far detector and 300 ton near detector
 - Expected 3σ mass hierarchy sensitivity
- Summer 2016 result
 - 33 electron neutrino events at far detector tends to favor Normal Mass Hierarchy

Collecting data since 2014

Liquid Scintillator Detector

NOvA Preliminary

\[
\sin^2 2\theta_{23} = 0.4-0.6
\]

\[
\begin{align*}
\text{NOvA FD} & \quad 6.05 \times 10^{20} \text{ POT equiv.} \\
\text{Total events} & \\
\end{align*}
\]

Denisov - INSTR 2017
Projects Overview: LBNF and DUNE

- **LBNF**: DOE project with support from non-DOE partners. Provides facility infrastructure at two locations to support the experiment
 - **Near site**: Fermilab – facilities to create neutrino beam
 - **Far site**: Sanford Underground Research Facility, South Dakota
- **DUNE**: Deep Underground Neutrino Experiment – 40 kt of LAr at Stanford
 - **Near and far site detectors**: U.S. as partner in international project
DUNE Experiment Physics Program

- **Neutrino oscillation physics**
 - Discover CP Violation in the leptonic sector
 - Determine Mass Hierarchy
- **Nucleon decay**
- **Supernova burst physics and astrophysics**
Fermilab and CERN neutrino platform provide a strong LArTPC development and prototyping program.
The DUNE Collaboration

As of today:

965 collaborators from 161 institutions in 30 nations

Armenia, Brazil, Bulgaria, Canada, CERN, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Peru, Poland, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, UK, Ukraine, USA

DUNE has broad international support and is growing
CERN Neutrino Program

- New building: EHN1 extension in the North area
- Two tertiary charged-particle beam lines
- Two large (8x8x8 m³) cryostats & cryogenic systems

- DUNE is the first large scale experiment CERN is participating “outside CERN”
- Major infrastructure developments (protoDUNE) and hardware contributions
- Critical for the success of the LBNF/DUNE participation
LBNF/DUNE Timeline

2017: Far Site Construction Begins

2018: protoDUNEs at CERN

2021: Far Detector Installation Begins

2024: Physics Data Begins (20 kt)

2026: Neutrino Beam Available
The Fermilab Test Beam Facility

- Since 2005, FTBF has hosted more than 1000 users from 177 institutions and 30 countries
 - Broad range of research topics, not just HEP
- Two beamlines
 - MTest: 120 GeV protons, 2-80 GeV mix
 - MCenter: 200 MeV to 80 GeV mix

Test beams operate ~10 months per year, except July-August shutdown.
Test beam experiments from a few hours to a few months are welcome!
Fermilab Accelerators Long Range Plan

LONG-RANGE PLAN: DRAFT Version 5

<table>
<thead>
<tr>
<th>LBNF/DUNE</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIP II</td>
<td></td>
</tr>
<tr>
<td>DUNE</td>
<td></td>
</tr>
<tr>
<td>LBNF</td>
<td></td>
</tr>
<tr>
<td>NuMI</td>
<td></td>
</tr>
<tr>
<td>MINOS+</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>LBNF</td>
<td>LBNF</td>
<td>LBNF</td>
</tr>
<tr>
<td>MINERvA</td>
<td>MINERvA</td>
<td>MINERvA</td>
<td>MINERvA</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>LBNF</td>
<td>LBNF</td>
<td>LBNF</td>
</tr>
<tr>
<td>NOvA</td>
</tr>
<tr>
<td>μBooNE</td>
<td>μBooNE</td>
<td>μBooNE</td>
<td>μBooNE</td>
<td>μBooNE</td>
<td>μBooNE</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>ICARUS</td>
<td>ICARUS</td>
<td>ICARUS</td>
<td>ICARUS</td>
<td>ICARUS</td>
<td>ICARUS</td>
<td>ICARUS</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>SBND</td>
<td>SBND</td>
<td>SBND</td>
<td>SBND</td>
<td>SBND</td>
<td>SBND</td>
<td>SBND</td>
<td>SBND</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Mu2e</td>
<td>g-2</td>
<td>g-2</td>
<td>g-2</td>
<td>g-2</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>Mu2e</td>
<td></td>
</tr>
<tr>
<td>Mu2e</td>
<td></td>
</tr>
<tr>
<td>Mu2e</td>
<td></td>
</tr>
<tr>
<td>Mu2e</td>
<td></td>
</tr>
<tr>
<td>SY 120</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>MC</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>FTBF</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>NM4</td>
<td>SeaQuest</td>
<td>SeaQuest</td>
<td>SeaQuest</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

NOTES:

1. Mu2e estimates 4 year running starts mid-FY22 after 18 months commissioning
2. DUNE without beam operates in FY25-FY26
3. Need to update understanding of PIP II schedule
4. Switching off NuMI for the LBNF beamline work could be earlier by 6 months or later by 18 months
5. MI shutdown (optimistically) assumed to be for 1 year, for LBNF work, nominally FY23 but Mu2e run plan may put pressure on MI shutdown to be as late as possible

Denisov - INSTR 2017
Generic Detectors R&D

- We encourage a high degree of collaboration with the university community and other national labs.

- Presence of research facilities such as:
 - Test beam facility
 - Silicon Detector facility
 - Precision Metrology facility
 - Rapid prototyping and Special Materials
 - Scintillator Detector Development
 - Thin-Film Facility
 - Liquid Argon Detector Development
 - ASIC Development Facility

- Experienced, well established engineering groups, such as
 - ASIC development
 - Cryogenics
 - Data Acquisition
 - Mechanical & Electronics Engineering

Fermilab is actively engaged in generic detectors R&D program
Efforts are concentrated along long term plans of the experiments at Fermilab
Fermilab Coordinates US-CMS Program

- CMS is steadily progressing with FNAL making critical contributions
 - ~50 Fermilab’s scientists involved
- Phase 1 upgrades are on track
- HL-LHC upgrades are under development
 - Major project with over $200 million U.S. contribution
- LHC Accelerator Research Program (LARP) is developing interaction region quadropoles for the high luminosity LHC

Prototype Sensor + PCB Module

Fermilab Test Beam

Pixel Detector Reintegration at CERN
Dark Energy Survey - DES

- DES goal is creating scans of night sky using 4 meters telescope and 570 megapixels camera (camera built at Fermilab) located in Chile
 - Started data collection in September of 2013
 - 40+ papers already published or in review
- Major scientific areas: studies of dark matter, dark energy, supernova, solar system survey, spectroscopically-confirmed quasars and many other topics
Dark Matter Direct Detection

- Many models expect dark matter to consist of heavy WIMP particles
- Multiple methods used to detect elastic scattering of WIMPs
 - Ionization, scintillation, phonons
- Fermilab is actively involved in CDMS experiment in Soudan mine (and others)

- 9kg SuperCDMS is currently operating at Sudan
- Observed best low mass WIMP limit
Planned Accelerator Upgrade – PIP II

- Proton linear accelerator with flexible beam structure based on SCRF technology
 - Increase of beam power to ~1 MW
 - Large scale partnership with India
- Platform for future neutrino and muon facilities
Superconducting RF is the key technology for the ILC where U.S. is interested to contribute

Coherence with production of cryo-modules by Fermilab for LCLS-II light source at SLAC and PIP-II upgrade at Fermilab
High Field Magnets Developments

- Area of Fermilab’s expertise since design and construction of the first superconducting accelerator – the Tevatron
- Breakthroughs in materials, systems, engineering are needed for higher fields
- Fermilab focuses on Nb$_3$Sn (conductor and magnet engineering)
 - Medium term goal is to build 15-16 T magnet suitable for FCC at CERN

1 meter long Nb$_3$Sn magnet successfully tested at Fermilab to 11.6T
Fermilab is participating in future colliders developments, including ILC and FCC
 • Based on Fermilab’s experience in accelerator and detector technologies
2017 - 50 years of Fermilab
Fermilab Program Overview

- Accelerator complex is running providing powerful beams
- LHC Run 2 is progressing, CMS detector is running well
- LBNF/DUNE program is actively progressing
- NOvA and MicroBooNE neutrino experiments all running well
- g-2 experiment will be ready for beam this year
- Mu2e experiment construction actively progressing
- Experiments on direct dark matter search progressing
- The Dark Energy Survey produces excellent results
- Developing future accelerator/detector technologies
- Theory group supporting LHC, neutrinos, lattice
- Several Tevatron analyses are concluding
- Modest involvement in future colliders activities, including ILC
Backup Slides
Long Baseline Neutrino Experiment

- Superior option to resolve mass hierarchy
- Find proton decay up to lifetime of 10^{35} years
- Detect supernova neutrinos
MINERvA (just in front of MINOS) is studying neutrino interactions in unprecedented detail on a variety of different nuclei – He, C, CH2, H2O, Fe, Pb

Important information for all neutrino based experiments
Primary proton beam at 60-120 GeV extracted from the Main Injector
Initial 1.2 MW beam power, upgradable to 2.4 MW
Embankment allows target complex to be at grade and neutrino beam to be aimed to South Dakota mine
Decay region followed by the absorber
Four surface support buildings
DUNE Near Detector

Beamline design based on Fermilab’s NOvA beam, currently the most powerful neutrino beam in the world
Overview – Far Site – LBNF/DUNE at South Dakota

- **Conventional Facilities:**
 - Two **caverns** for detectors and connection tunnels
 - **Central utility cavern** for conventional and cryogenic equipment
 - **Surface** and **shaft** Infrastructure including utilities

- **Cryostats:**
 - Four **membrane** cryostats supported by external steel frames

- **Cryogenic Systems:**
 - **LN$_2$ refrigeration system** for cooling and re-condensing gaseous Argon
 - Systems for **purification** and **recirculation** of LAr

- **Argon:** 70kt LAr (~40kt fiducial mass)

- **DUNE LAr-TPC Detectors**

 Extensive prototyping program in progress to scale LAr TPC detector technology to 10kt fiducial volume
From the top quark discovery to the Higgs boson evidence – 25 years program

Over 1200 papers cementing Standard Model

Most accurate measurement of W boson mass