Phase I Upgrade of the CMS Pixel Detector

INSTR17, Novosibirsk
28.02.2017

M. Lipinski for the CMS Collaboration

I. Physikalisches Institut B, RWTH Aachen University
In total **66 million pixels**
- n+-in-n sensor, pixel size of 100x150 μm
- Resolution: 10 μm in rφ, 20-40 μm in z
- Designed for $L_{\text{inst}} = 1 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ and 25ns bunch spacing
Motivation for the Pixel Upgrade

- Current pixel detector specified for LHC **design luminosity of \(1 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}\)**
- LHC planning: \(\sim 2 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1} \) between 2015 and 2018
 - Up to **50 events per bunch crossing** (pileup) and hit rates of \(\approx 600 \text{ MHz/cm}^2\)

- Dynamic inefficiencies due to limited readout bandwidth
- Low redundancy (3 layers) have impact on tracking efficiency and fake rate

→ replacement of pixel detector during extended year-end technical stop (EYETS) in 2017
Phase 1 detector:
- 1 additional layer in barrel & endcap
 - Factor 1.9 more channels (124 Mill.)
- Reduced material budget ($\approx 25 \text{ kg} \rightarrow \approx 14 \text{ kg}$)
 - 2-phase CO$_2$ cooling
 - Lightweight support structure
 - Relocation of services
Novel Powering Scheme

Reuse existing cables and power supplies with factor 1.9 more channels
→ Factor 4 larger losses on the cables
→ Need a new powering scheme using **DC-DC converters**

<table>
<thead>
<tr>
<th>Power supply</th>
<th>DC-DC converter</th>
<th>Pixel modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>U=10 V</td>
<td>U≈3.3 V</td>
<td></td>
</tr>
<tr>
<td>50 m</td>
<td>2 m</td>
<td></td>
</tr>
</tbody>
</table>

- Conversion ratio 3 – 4
- Cable losses reduced by factor 10

1200 DC-DC converters in total, custom development:
- Radiation hard ASIC (FEAST2 by CERN)
- Air core inductor for operating in magnetic field
Phase 1 Readout Chips

Psi46dig: evolution of psi46, for BPIX layers 2-4 & FPIX
 ➔ „Column Drain“ architecture
 - 40 MHz analog readout → 160 Mbit/s digital
 - Increase of hit (32 → 80) & time stamp (12 → 24) buffer depth
 - Additional readout buffer
 - Reduced cross-talk → minimal threshold reduced from ~3200 e to ~ 1500 e
 ➔ Improved rate capability & resolution

PROC600: new chip designed for BPIX layer 1
 ➔ „Dynamic Cluster Column Drain“ architecture
 - Readout of 2x2 clusters instead of single pixels
 - Allows up to 7 pending column readouts
 - Buffers not reset after readout
 ➔ 97.5% efficiency at 600 MHz/cm²
Evolutionary upgrade: Module concept and sensor design unchanged

BPIX Layer 1 Module

BPIX Layer 2-4 Module

FPIX Module

High Density Interconnect (HDI)
1 or 2 Token Bit Manager chips

n+-in-n silicon sensor
66,560 pixels

16 readout chips (ROCs)
psi46dig & PROC600 (BPIX Layer 1)
Bump-bonded to sensor

Si$_3$N$_4$ base-strips
Module Production

- Modules are produced in a distributed scheme
- A variety of bump-bonding vendors and technologies

Example KIT/RWTH:

- Sensor production (CiS)
- Processing, testing (PacTech)
- ROC production (IBM)
- Wafer testing (PSI)
- Processing (RTI)
- Gluing of HDI and base strips
- Wire bonding
- Electrical test
- Shipping
- Qualification
- Cold test, X-ray test

L1 + L2: Switzerland
L3: CERN/Finland/Taiwan/Italy
L4: Germany
FPIX: USA
Common test procedures and software used among all centers:

Cold Qualification:
- IV curve measurement and electrical test at +17°C and at -20°C
- 10 thermal cycles as stress test

![Graph showing temperature changes during test procedures](image-url)
Module Qualification (BPIX)

X-ray Qualification:
- Energy calibration with fluorescence lines
- High rate tests with X-ray hit rates up to 150 MHz/cm²

Pulse Height Spectra

Calibration Fit

- ≈ 45 e⁻/Vcal
- 3.6 eV per electron in Si

Number of Hits

Number Electrons
Results from Production (BPIX)

Production finished in Summer 2016:

- Slow ramp up due to distributed production scheme
- \(\approx 2 \) years of production

Efficiency (BPIX L2-L4):

- Entries: 1467
- Mean: 99.1
- RMS: 0.4534
- Underflow: 2
- Overflow: 0

120 MHz/cm\(^2\) X-rays

Defect Bump Bonds (BPIX L2-L4):

- Entries: 1470
- Mean: 23.31
- RMS: 48.36
- Overflow: 45

\(\mu = 0.035\% \) defect pixels
System Tests

Various **test stands** to test the **full chain** with final DAQ
- Test the power system, cooling and readout in practice
- Software and Firmware development for the final detector

Pilot System:
- 8 prototype modules installed in old detector
- Taking data in 2015 and 2016
- Operation under **realistic conditions**

Comparison of conventional and DC-DC powering:

- Testboard
- PixV13
- PixV13, realistic load
- PixV13, Orbit Gaps

Number of pixels

<table>
<thead>
<tr>
<th></th>
<th>Testboard</th>
<th>PixV13</th>
<th>PixV13, realistic load</th>
<th>PixV13, Orbit Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>66560</td>
<td>66560</td>
<td>66556</td>
<td>66556</td>
</tr>
<tr>
<td>Mean</td>
<td>130.5</td>
<td>130.8</td>
<td>129.1</td>
<td>129.9</td>
</tr>
<tr>
<td>RMS</td>
<td>14.8</td>
<td>16.2</td>
<td>15.99</td>
<td>16.29</td>
</tr>
</tbody>
</table>

Noise [e]

μTCA-based DAQ
Detector Assembly and Integration

FPIX:

BPIX:
Final Tests

- Assembly and test at the integration centers (USA, Switzerland)
- Detector transported to CERN for **final checkout**:
 - Detector is run cold
 - BPIX: Quick test:
 - Module programmability
 - Noise measurement (Scurves)
 - Low voltage currents
 - FPIX: Full calibration sequence
New pixel detector to be installed in CMS in extended technical stop 2016/2017

- Additional layer in the barrel and endcaps will almost double the number of channels
- Still reduced material budget due to lightweight structure and evaporative CO$_2$ cooling
- New readout chips with higher rate capability developed

→ Upgrade detector will maintain high quality physics data taking

- Distributed production of all parts has finished
- Detector is fully integrated
- Final checkout is ongoing at CERN
- Installation at the end of February & beginning of March