NA62 Charged Particle Hodoscope
Design and performance in 2016

S. Kholodenko
on behalf of NA62 collaboration
NA62 High intensity kaon beam

- SPS primary proton beam @ 400 GeV/c
- Protons on target: 3×10^{12} / pulse
- Secondary charged beam 75 GeV/c
- Rate @ beam tracker: 750 MHz
- 6% K^+ (others: 70% π^+, 24%proton)
- K decay rates: 4.5×10^{12} /year
 - In a 60 m decay volume
 - 10^{-6} mbar vacuum
Main goal: Measuring $\text{Br}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% precision

PDG value: $\text{Br}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (1.7 \pm 1.1) \times 10^{-10}$

- 75 ($\pm 1\%)$ GeV/c unseparated secondary hadron ($K/ p / \pi$) beam
- Kaon decays in flight technique
- 750 MHz beam; 45 MHz Kaons (~6%); ~10 MHz L0 rate
The main function of the hodoscope:

- To identify trigger topologies with charged particles in the fiducial volume
- To detect photon conversion and hadron interactions of particles in the material upstream.

An essential requirement for the NA62 Level 0 (L0) trigger:

Detecting charged particles with:

- adequate efficiency
- Rate capability

Expected rates @ full intensity: particle rate ~15 MHz; Hit rate ~ 45 MHz

- good time resolution (better than 1 ns)

in measuring the signal arrival time comparable with other detectors used in the L0 trigger.
The hodoscope (CHOD) has been installed between RICH and last station of Large Angle VETO (LAV12)
Charged particle HO
doscope

- The cell structure detector made of 30 mm thick scintillator tiles
- Consists of 38×4=152 scintillator tiles arranged in 4 quadrants.
- Covers the area 140 mm < R < 1070 mm
- tiles: 267.5 × 108 mm² and 133.75 × 108 mm²
- Dual channel readout (2 readout channels for each tile)
- Coincidence of the two signals identified as a particle
- Using a mean signal arrival time

Expected rates in CHOD tiles at nominal beam intensity (in MHz)

Probability of detecting a signal in each tile for K^+→π^+νν decay
Charged particle HODoscope

WLS-Fibers
- d=1mm Y11(200) type S
- Length: 1.35 m, 1.6 m, 1.8 m & 2.0m

Tiles made of SC-201 scintillator 30 mm thick.
Wrapped: combination of Tyvek and 70μm Al-Mylar

Cookies (Frames)

Silicon photomultipliers:
SensL MicroFC-30035
Readout electronics

Amplifiers

- **SiPMs**
 - Bias voltage +29V
- **16 ch amplifier**
- **LeCroy 4413**
- **ECL to LVDS**
- **TDC TEL62**

Optical-electronic node

- From each optical-electronic node:
 - CAEN SY5527
 - A1540LP
 - A2518

- **DSC**

- **LO trigger**

In total there are:

- x20 optical-electronic nodes
Using Control data only!

muons from Kμ2 decay:

Looking for hits in CHOD

Time(CHOD - Cedar) < 10ns

One may point out an empty corners which are physically empty (special cut for the ties to fix periphery tiles).
Performance: Efficiency (2)

- Efficiency vs Tile ID
- Efficiency vs momentum
- Stability

~ 13 hours
Assuming the edge coordinate as a point with 50% efficiency...

The plateau efficiency value is 99.48 ± 0.08%

X size = 133.96 ± 0.05 mm physical size = 133.75 mm

Y size = 108.11 ± 0.05 mm physical size = 108 mm
Using Control trigger data:
Selecting muons from K\(\mu 2\) decay.
Looking for selected tile with both channels hit (±5ns).

Coordinates of secondary muons with hit in Tile112

On average on-line* time resolution (sigma) of the tiles ~ 1 ns

* value that goes to the L0 trigger
Using Control data only!

- Selected $K\mu_2$ decay
- Asking for track to be a few millimeters away from the edges
- For each tile working

MeanTime(chA,chB) - Cedar time

- NEntries > 100
 (that's why 4 tiles are blank on the right side)
- Gaussian fit

 Plotting sigma values
NA62 CHOD in L0-trigger

List of produced L0-trigger primitives:

- Hit in specified quadrant only (1-4)
- Hit/tight hit in specified tiles
- Hit in any tile
- Hits in at least two tiles
- At least two quadrants are hit [multi-track trigger]
- At least two diagonally-opposite quadrants are hit [multi-track trigger]
- Event satisfies the upper tight-hit-multiplicity cut (event has less than 5 hits)
Before the start of 2016 run:

- A new detector has been assembled and installed in the experimental hall.
- Fully integrated in NA62 Data Acquisition and Detector Control (DCS) systems
- Included in L0-trigger

During the run 2016: reasonable performance:

For the single track events (muons from K\(\mu_2\) decay):

- Time resolution ~ 1ns (with “classic” threshold discriminators LeCroy 4413)
- Efficiency ~ 99%.

For 2017 Run expecting to improve time resolution from 1 ns to 0.6 ns:

- By changing “classical” threshold discriminators to CFD.
- Possibility of adjusting thresholds individually channel by channel.
spares
CHOD history

2013
Single tile R&D

October 2014
A prototype with 17/152 tiles

November 2015 Charged particle hodoscope assembling complete
Vladimir Rykalin (Protvino) with 1 of 4 polymerized scintillator object produced for the NA62 CHOD
26th of November 2015. Assembling complete
3rd of March 2016. CHOD installed