Stress simulation on a round wheel W target

S. Jin ${ }^{1}$, P. Sievers ${ }^{2}$, T. Omori ${ }^{3}$, J.Gao ${ }^{1}$
${ }^{1}$ IHEP; ${ }^{2}$ CERN; ${ }^{3}$ KEK;
POSIPOL2017, BINP, Novosibirsk, Russia, Sept. 18-21, 2017.

Outline

- Introduction
- Simulation results of full ring and sliced ring
- Summary

Introduction

- Main structure of the model

- For model 1, there is no slots in tungsten part;
- For model 2, the tungsten is sliced to 10 parts by the slot with a width of 0.2 mm ;
- An intermetallic contact between the W and the Cu, like brazing, is assumed, with a thermal conductance of $2 \mathrm{~W} /\left(\mathrm{cm}^{\wedge} 2-\mathrm{K}\right)$
- The average power is deposited uniformly in time and space over the top part of the W. In total about 35 Kw
- The water temperature is 50 K .

Model-1

Model-1

- Boundaries:

- Water Temperature: 50C
- Thermal Conductance for both of water- Cu and $\mathrm{W}-\mathrm{Cu}$ surface: $0.02 \mathrm{~W} / \mathrm{mm}^{\wedge} 2$
- Power is only deposited in the top part of the W with $0.0795 \mathrm{~W} / \mathrm{mm}^{\wedge} 3$
- There is a Cu bar with diameter of 30 mm in the center. We fixed it.

Results: Temperature distribution

ANSYS

Temperature

There will be a temperature jump at the interface.

Temperature

The temperature is obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Results: v. M. Stresses

v. M. stresses

interface

The v. M. stresses

The $\mathrm{v} . \mathrm{M}$. stresses are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Sigma r

The stresses at radial direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Sigma phi

The stresses at phi direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Sigma z

The stresses at axial direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

H: Copy of Static Structural
 Equivalent Stress

Type: Equivalent (von-Mises) Stress
Unit: MPa
Time: 1
Custom
Max: 258.9
Min: 10.625
2017/3/29 17:32
129.58
$\square 129.58$ -103.63 -90.659 77.684 64.71 54.71
51.736 51.736
38.761 38.761
25.787
12.812

ANSYS

H: Copy of Static Structural
Equivalent Stress
Type: Equivalent (von-Mises) Stress
Unit: MPa
Time: 1
Custom
Custom
Max: 258.9
Max: 258.9
Min: 10.625 2017/3/29 17:34

- 129.58
$\square \begin{aligned} & 129.58 \\ & 116.61\end{aligned}$
-103.63
-90.659
77.684
-64.71
51.736
38.761
38.761
25.787
12.812

ANSYS
R17.0

Stresses at the other side of Cu .

Stresses for Cu at interface.

The Stress here should be because the center bar is fixed as a boundary condition.

Model-2:

Sliced W-target with 10 gaps of $\mathbf{0 . 2 m m}$

Model-2: sliced W-target with 10 gaps of 0.2 mm

Results: Temperature distribution

\author{

They are essentially the same as in the full ring, as expected.

Results: Stresses

\because

v. M. Stresses distribution at interface

v. M. stress in-plane of contact surface at W wheel

v. M. stress in-plane of contact surface at Cu wheel

Stresses at center of the sector

The v. M. stresses

- The v. M. stresses are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .
- There a binning problem. It should not be a real data.

Sigma r

The stresses at radial direction (sigma x) are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Sigma phi

The stresses at phi direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Sigma z

The stresses at axial direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Stresses at end of the sector

The v. M. stresses

- The v. M. stresses are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .
- Path for W is on the surface of W due to the gaps.
- Discussion: the max. stress in this picture appearing at the point shown in the picture is about 164 Mpa . However, the max. stress for whole model is about 208MPa. It appears at the similar point in one of connection positions between gaps and Cu cooler.

Sigma r

The stresses at radial direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W.

Sigma phi

The stresses at phi direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W.

Sigma z

The stresses at axial direction are obtained at the surfaces which are both 0.1 mm off the interface for Cu and W .

Stresses check near the interface at end of the sector

- Model: it is the same as model-2
- The v. M. stresses at end-surface are calculation near the interface at end of sector

So, we check the paths as following:

$$
\begin{aligned}
& \text { W: } \\
& (-0.2,220,-20.1) \text { to }(-0.2,240,-20.1) \\
& (-0.4,220,-20.1) \text { to }(-0.4,240,-20.1) \\
& (-0.6,220,-20.1) \text { to }(-0.6,240,-20.1) \\
& (-0.8,220,-20.1) \text { to }(-0.8,240,-20.1) \\
& (-1.0,220,-20.1) \text { to }(-1.0,240,-20.1) \\
& \text { Cu } \\
& (-0.2,220,-19.9) \text { to }(-0.2,240,-19.9) \\
& (-0.4,220,-19.9) \text { to }(-0.4,240,-19.9) \\
& (-0.6,220,-19.9) \text { to }(-0.6,240,-19.9) \\
& (-0.8,220,-19.9) \text { to }(-0.8,240,-19.9) \\
& (-1.0,220,-19.9) \text { to }(-1.0,240,-19.9)
\end{aligned}
$$

$$
\begin{aligned}
& \text { W: } \\
& (-1.0,220,-20.2) \text { to }(-1.0,240,-20.2) \\
& (-1.0,220,-20.4) \text { to }(-1.0,240,-20.4) \\
& (-1.0,220,-20.6) \text { to }(-1.0,240,-20.6) \\
& (-1.0,220,-20.8) \text { to }(-1.0,240,-20.8) \\
& (-1.0,220,-21) \text { to }(-1.0,240,-21) \\
& \text { Cu } \\
& (-1.0,220,-19.8) \text { to }(-1.0,240,-19.8) \\
& (-1.0,220,-19.6) \text { to }(-1.0,240,-19.6) \\
& (-1.0,220,-19.4) \text { to }(-1.0,240,-19.4) \\
& (-1.0,220,-19.2) \text { to }(-1.0,240,-19.2) \\
& (-1.0,220,-18) \text { to }(-1.0,240,-18)
\end{aligned}
$$

v. M. stress for W

$$
\begin{aligned}
& \text { W: } \\
& (-0.2,220,-20.1) \text { to }(-0.2,240,-20.1) \\
& (-0.4,220,-20.1) \text { to }(-0.4,240,-20.1) \\
& (-0.6,220,-20.1) \text { to }(-0.6,240,-20.1) \\
& (-0.8,220,-20.1) \text { to }(-0.8,240,-20.1) \\
& (-1.0,220,-20.1) \text { to }(-01.0,240,-20.1)
\end{aligned}
$$

Along the interface at tungsten

v. M. stress for Cu

Cu
$(-0.2,220,-19.9)$ to $(-0.2,240,-19.9)$
$(-0.4,220,-19.9)$ to $(-0.4,240,-19.9)$
$(-0.6,220,-19.9)$ to $(-0.6,240,-19.9)$
$(-0.8,220,-20.1)$ to $(-0.8,240,-19.9)$
$(-1.0,220,-19.9)$ to (-1.0, 240, -19.9)
Along the interface at Cu

v. M. stress for W

W:
$(-1.0,220,-20.2)$ to $(-1.0,240,-20.2)$
$(-1.0,220,-20.4)$ to $(-1.0,240,-20.4)$
$(-1.0,220,-20.6)$ to ($-1.0,240,-20.6$)
$(-1.0,220,-20.8)$ to $(-1.0,240,-20.8)$
$(-1.0,220,-21)$ to $(-1.0,240,-21)$

The path at interface is 1 mm far from end section.

Path at interface:

v. M. stress for Cu

Comparison and Conclusion

		Peak tempature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{array}{\|c\|} \hline \text { Peak v.M } \\ \text { stress (MPa) } \end{array}$	Stresses at interface (Mpa)				
		v.M.stress		sigma r	sigma phi	sigma z		
	interface for \mathbf{W}		377 at W	251 at W	40 to 130	20 to 120	-50 to 150	-15 to 10
Full ring	interface for Cu	65 to 125			-30 to 10	-140 to -50	-12 to 0	
Sliced ring	interface near center of section for \mathbf{W}	380 at W	208 at interface	40 to 100	20 to 80	40 to 100	-3 to 7	
	interface near center of section for Cu			80 to 135	-10 to 25	-130 to -50	-2 to 13	
	interface near end surface of section for \mathbf{W}			20 to 150	-90 to 10	-30 to 15	-45 to -4	
	interface near end surface of section for $\mathbf{C u}$			90 to 130	-90 to -30	-140 to -100	-5 to 1	

- Sliced ring suffer much less stress.
- However, we need to pay attention to the interface. This can lead to fatigue and thus to loss of thermal contact.

Thanks!

