An update of Energy deposition around an e-driven positron source

T. Omori for Tohru Takahashi Hiroshima University

Sorry for not attending the workshop in person

PosiPol2017 September 2017 Novosibirsk

Contents

Parameters

Geometry

Results

• Further issues?

Geometry

Parameters and geometry in Geant4

3120 bunches

Ee	e-	e-/bunch	Beam Power	Total thickness
GeV	mm	nC	kW	kW
3.0	2	2.4	48	12.1

Summary of the calculation

PEDD(1320 bunches) in FC

Less than the limit for Cu (7~12 J/g)* with 1320 bunches (~ 64ms).

*TESLA-FEL-2006-05

Energy deposit in irises the capture linac

Detuning -38.2kHz/7.4kW in an iris (an estimate from SLAC-PUB-11767)

38.2 x 1.2/7.4 = 6.2 kHz ,at the worst estimate, is less than the bandwidth of 44 kHz

Energy deposit in irises the capture linac

Summary of the energy deposition

Target 16.3kW

Pipe 6.6kW

Flux Concentrator 4.1kW(beam) + 14kW(ohmic)

PEDD=6J/g(1320bunch)=0.3kW/cm³

Capture Linar 25.6kW(total) 3.32kW(RF) per 9Cell(tube)

11.0kW(beam) + 3.32kW(RF) in first 9Cell

Prospects

- Energy deposition issues are much relaxed and does not seem to be an issues for e-driven target.
 - An engineering design of the cooling system is necessary and a discussion with a company started.
- Further considerations may needed and planned
 - Effect of secondary particles on operation of the capture linac
 - Neutron hits on Ferro fluid sealing