Home > Timetable > Contribution details

Contribution Invited Oral

SR technological application and X-ray apparatus

Development of X-ray coherent optics for fourth generation synchrotrons and XFELs.

Speakers

  • Dr. Anatoly SNIGIREV

Primary authors

Content

New ultimate parameters of the beam provided by the diffraction-limited sources will open up unique opportunities to build up a new concept for the beam- transport and conditioning systems based on in-line refractive optics [1]. Taking an advantage of the reduced horizontal source size and divergence, the refractive optics integrated into the front-end can transfer the photon beam almost without losses from the source directly to the end-stations. In this regard, development of diamond refractive optics is crucial [2,3]. In addition to traditional focusing applications, the refractive optics can provide the various beam conditioning functions in the energy range from 3 to 200 keV: condensers, micro-radian collimators, low-band pass filters, high harmonics rejecters [4], beam-shaping elements [5].

The implementation of the lens-based beam transport concept can significantly simplify the layout of majority of new beamlines, opening novel opportunities for the protein crystallography [6] and for the material science research under extreme conditions [7-8]. The versatile beam conditioning properties of refractive optics enable to develop and implement new X-ray coherence-related techniques including interferometry [9-11], phase contrast imaging [12-14] and dark field microscopy [15] using light polymer micro-objectives made by additive technology [16].

References

[1] A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature, 384 (1996) 49. [2] S. Terentyev, V. Blank, S. Polyakov et al, Appl. Phys. Let., 107 (2015) 111108. [3] S. Terentyev, M. Polikarpov, I. Snigireva et al, J. Synchrotron Rad., 24 (2017) 103. [4] M. Polikarpov, I. Snigireva, A. Snigirev, J. Synchrotron Rad., 21 (2014) 484. [5] D. Zverev, A. Barannikov, I. Snigireva, A. Snigirev, Opt. Express, 25 (2017) 28469. [6] M. W. Bowler, D. Nurizzo, R. Barrett et al, J. Synchrotron Rad., 22 (2015) 1540. [7] N. Dubrovinskaia , L. Dubrovinsky, N. Solopova, et al, Sci. Adv., 2 (2016) e1600341. [8] F. Wilhelm, G. Garbarino, J. Jacobs, et al, High Pressure Research, 36 (2016) 445. [9] A. Snigirev, I. Snigireva, M. Lyubomirskiy, et al, Opt. express, 22 (2014) 25842. [10] M. Lyubomirskiy, I. Snigireva, A. Snigirev, Optics express, 24 (2016) 13679. [11] M. Lyubomirskiy, I. Snigireva, V. Kohn, et al, J. Synchrotron Rad., 23 (2016) 1104. [12] K. V. Falch, C. Detlefs, M. Di Michiel et al, Appl. Phys. Lett., 109 (2016) 054103. [13] K. V. Falch, D. Casari, M. Di Michiel et al, J. .Mater. Sci., 52 (2017) 3437. [14] K. V. Falch, M. Lyubomirskiy, D. Casari, et al, Ultramicroscopy, 184 (2018) 267. [15] H. Simons, A. King, W. Ludwig et al, Nature Communications, 6 (2015) 6098. [16] A. K. Petrov, V. O. Bessonov, K. A. Abrashitova et al, Opt. Express, 25 (2017) 14173.