Speaker
Dr
Anatoly Snigirev
(Immanuel Kant Baltic Federal University)
Description
New ultimate parameters of the beam provided by the diffraction-limited sources will open up unique opportunities to build up a new concept for the beam- transport and conditioning systems based on in-line refractive optics [1]. Taking an advantage of the reduced horizontal source size and divergence, the refractive optics integrated into the front-end can transfer the photon beam almost without losses from the source directly to the end-stations. In this regard, development of diamond refractive optics is crucial [2,3]. In addition to traditional focusing applications, the refractive optics can provide the various beam conditioning functions in the energy range from 3 to 200 keV: condensers, micro-radian collimators, low-band pass filters, high harmonics rejecters [4], beam-shaping elements [5].
The implementation of the lens-based beam transport concept can significantly simplify the layout of majority of new beamlines, opening novel opportunities for the protein crystallography [6] and for the material science research under extreme conditions [7-8]. The versatile beam conditioning properties of refractive optics enable to develop and implement new X-ray coherence-related techniques including interferometry [9-11], phase contrast imaging [12-14] and dark field microscopy [15] using light polymer micro-objectives made by additive technology [16].
References
[1] A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature, 384 (1996) 49.
[2] S. Terentyev, V. Blank, S. Polyakov et al, Appl. Phys. Let., 107 (2015) 111108.
[3] S. Terentyev, M. Polikarpov, I. Snigireva et al, J. Synchrotron Rad., 24 (2017) 103.
[4] M. Polikarpov, I. Snigireva, A. Snigirev, J. Synchrotron Rad., 21 (2014) 484.
[5] D. Zverev, A. Barannikov, I. Snigireva, A. Snigirev, Opt. Express, 25 (2017) 28469.
[6] M. W. Bowler, D. Nurizzo, R. Barrett et al, J. Synchrotron Rad., 22 (2015) 1540.
[7] N. Dubrovinskaia , L. Dubrovinsky, N. Solopova, et al, Sci. Adv., 2 (2016) e1600341.
[8] F. Wilhelm, G. Garbarino, J. Jacobs, et al, High Pressure Research, 36 (2016) 445.
[9] A. Snigirev, I. Snigireva, M. Lyubomirskiy, et al, Opt. express, 22 (2014) 25842.
[10] M. Lyubomirskiy, I. Snigireva, A. Snigirev, Optics express, 24 (2016) 13679.
[11] M. Lyubomirskiy, I. Snigireva, V. Kohn, et al, J. Synchrotron Rad., 23 (2016) 1104.
[12] K. V. Falch, C. Detlefs, M. Di Michiel et al, Appl. Phys. Lett., 109 (2016) 054103.
[13] K. V. Falch, D. Casari, M. Di Michiel et al, J. .Mater. Sci., 52 (2017) 3437.
[14] K. V. Falch, M. Lyubomirskiy, D. Casari, et al, Ultramicroscopy, 184 (2018) 267.
[15] H. Simons, A. King, W. Ludwig et al, Nature Communications, 6 (2015) 6098.
[16] A. K. Petrov, V. O. Bessonov, K. A. Abrashitova et al, Opt. Express, 25 (2017) 14173.
Primary author
Dr
Anatoly Snigirev
(Immanuel Kant Baltic Federal University)