Development of X-ray coherent optics for fourth generation synchrotrons and XFELs.

Not scheduled
Conference Hall (Budker INP)

Conference Hall

Budker INP

Lavrentiev av. 11, Novosibirsk 630090 Russia
Invited Oral SR technological application and X-ray apparatus


Dr Anatoly Snigirev (Immanuel Kant Baltic Federal University)


New ultimate parameters of the beam provided by the diffraction-limited sources will open up unique opportunities to build up a new concept for the beam- transport and conditioning systems based on in-line refractive optics [1]. Taking an advantage of the reduced horizontal source size and divergence, the refractive optics integrated into the front-end can transfer the photon beam almost without losses from the source directly to the end-stations. In this regard, development of diamond refractive optics is crucial [2,3]. In addition to traditional focusing applications, the refractive optics can provide the various beam conditioning functions in the energy range from 3 to 200 keV: condensers, micro-radian collimators, low-band pass filters, high harmonics rejecters [4], beam-shaping elements [5]. The implementation of the lens-based beam transport concept can significantly simplify the layout of majority of new beamlines, opening novel opportunities for the protein crystallography [6] and for the material science research under extreme conditions [7-8]. The versatile beam conditioning properties of refractive optics enable to develop and implement new X-ray coherence-related techniques including interferometry [9-11], phase contrast imaging [12-14] and dark field microscopy [15] using light polymer micro-objectives made by additive technology [16]. References [1] A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature, 384 (1996) 49. [2] S. Terentyev, V. Blank, S. Polyakov et al, Appl. Phys. Let., 107 (2015) 111108. [3] S. Terentyev, M. Polikarpov, I. Snigireva et al, J. Synchrotron Rad., 24 (2017) 103. [4] M. Polikarpov, I. Snigireva, A. Snigirev, J. Synchrotron Rad., 21 (2014) 484. [5] D. Zverev, A. Barannikov, I. Snigireva, A. Snigirev, Opt. Express, 25 (2017) 28469. [6] M. W. Bowler, D. Nurizzo, R. Barrett et al, J. Synchrotron Rad., 22 (2015) 1540. [7] N. Dubrovinskaia , L. Dubrovinsky, N. Solopova, et al, Sci. Adv., 2 (2016) e1600341. [8] F. Wilhelm, G. Garbarino, J. Jacobs, et al, High Pressure Research, 36 (2016) 445. [9] A. Snigirev, I. Snigireva, M. Lyubomirskiy, et al, Opt. express, 22 (2014) 25842. [10] M. Lyubomirskiy, I. Snigireva, A. Snigirev, Optics express, 24 (2016) 13679. [11] M. Lyubomirskiy, I. Snigireva, V. Kohn, et al, J. Synchrotron Rad., 23 (2016) 1104. [12] K. V. Falch, C. Detlefs, M. Di Michiel et al, Appl. Phys. Lett., 109 (2016) 054103. [13] K. V. Falch, D. Casari, M. Di Michiel et al, J. .Mater. Sci., 52 (2017) 3437. [14] K. V. Falch, M. Lyubomirskiy, D. Casari, et al, Ultramicroscopy, 184 (2018) 267. [15] H. Simons, A. King, W. Ludwig et al, Nature Communications, 6 (2015) 6098. [16] A. K. Petrov, V. O. Bessonov, K. A. Abrashitova et al, Opt. Express, 25 (2017) 14173.

Primary author

Dr Anatoly Snigirev (Immanuel Kant Baltic Federal University)

Presentation Materials

There are no materials yet.